login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219879
Number of nX4 arrays of the minimum value of corresponding elements and their horizontal, diagonal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 nX4 array
1
10, 17, 129, 621, 2645, 10350, 40239, 155199, 581728, 2085519, 7121374, 23225035, 72683520, 219218974, 639377404, 1808073511, 4967931875, 13286469360, 34640551307, 88162618939, 219292820124, 533661457600, 1271821824645
OFFSET
1,1
COMMENTS
Column 4 of A219883
LINKS
FORMULA
Empirical: a(n) = (1/1105220249217462744317952000000)*n^29 + (1/38111043076464232562688000000)*n^28 - (1/201645730563302817792000000)*n^27 + (389/604937191689908453376000000)*n^26 - (307/46533630129992957952000000)*n^25 - (773/404640261999938764800000)*n^24 + (40878821/195441246545970423398400000)*n^23 - (70069501/8497445501998714060800000)*n^22 + (12139/477733485241958400000)*n^21 + (50109247/2829652181817753600000)*n^20 - (445566582679/404640261999938764800000)*n^19 + (737417025883/21296855894733619200000)*n^18 - (2216933583028729/5814041659262278041600000)*n^17 - (6268242075250621/342002450544839884800000)*n^16 + (18619463335254179/16285830978325708800000)*n^15 - (536852810288080877/16285830978325708800000)*n^14 + (1152350125136381123/2129685589473361920000)*n^13 - (24885562289413355029/10648427947366809600000)*n^12 - (39408208806540972298007/289685642113592524800000)*n^11 + (1255759711529881816639841/289685642113592524800000)*n^10 - (4460229918485515193847251/63225040937490432000000)*n^9 + (370772167856232917329483/540384965277696000000)*n^8 - (39409170362295331975190999/13464592051502592000000)*n^7 - (280106596148918041437854963/13464592051502592000000)*n^6 + (23189350672718808866722526453/51053244861947328000000)*n^5 - (379821968293133120568499603/102106489723894656000)*n^4 + (3496996713409130344932041/202592241515664000)*n^3 - (3708578246594560887479/83889126921600)*n^2 + (35941859372224430069/776363187600)*n + 10128532 for n>12
EXAMPLE
Some solutions for n=3
..1..0..0..0....0..0..0..0....2..0..0..0....1..1..0..1....2..1..1..1
..1..0..0..0....0..0..0..0....2..0..0..0....1..0..0..0....2..1..1..1
..1..1..0..0....1..1..0..1....2..2..0..2....1..0..0..0....2..2..1..1
CROSSREFS
Sequence in context: A351498 A058621 A183229 * A177185 A241281 A002744
KEYWORD
nonn
AUTHOR
R. H. Hardin Nov 30 2012
STATUS
approved