Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Apr 26 2023 06:14:02
%S 1,2,1,5,2,2,16,9,6,6,65,28,12,24,24,326,185,140,60,120,120,1957,846,
%T 750,120,360,720,720,13700,7777,2562,5250,840,2520,5040,5040,109601,
%U 47384,47096,40656,1680,6720,20160,40320,40320,986410,559953,378072,181944,365904,15120,60480,181440,362880,362880
%N Triangle read by rows: T(n,k) = logarithmic polynomial A_k^(n)(x) evaluated at x=-1.
%H J. M. Gandhi, <a href="/A002741/a002741.pdf">On logarithmic numbers</a>, Math. Student, 31 (1963), 73-83. Gives first 10 rows. [Annotated scanned copy]
%e Triangle begins:
%e 1;
%e 2, 1;
%e 5, 2, 2;
%e 16, 9, 6, 6;
%e 65, 28, 12, 24, 24;
%e 326, 185, 140, 60, 120, 120;
%e 1957, 846, 750, 120, 360, 720, 720;
%e ...
%p A260325 := proc(n,r)
%p if r = 0 then
%p 1 ;
%p elif n > r+1 then
%p 0 ;
%p else
%p add( 1/(r-j*n+1)!,j=1..(r+1)/n) ;
%p %*r! ;
%p end if;
%p end proc:
%p for r from 0 to 20 do
%p for n from 1 to r+1 do
%p printf("%a,",A260325(n,r)) ;
%p end do:
%p printf("\n") ;
%p end do: # _R. J. Mathar_, Jul 24 2015
%t T[n_, k_] := Which[n == 0, 1, k > n+1, 0, True, Sum[1/(n-j*k+1)!, {j, 1, (n+1)/k}]*n!];
%t Table[T[n, k], {n, 0, 9}, {k, 1, n+1}] // Flatten (* _Jean-François Alcover_, Apr 25 2023 *)
%Y Rows, column sums give A000522, A002747, A002750, A002751.
%Y Main diagonal gives A000142.
%Y Cf. A260322, A260323, A260324.
%K sign,tabl
%O 1,2
%A _N. J. A. Sloane_, Jul 23 2015