OFFSET
1,1
COMMENTS
This sequence is associated with the conjecture in A245664 that p + q is prime-partitionable.
There are 138438 values of p in the first 216816 primes, i.e., 63.85%, all of which are distinct.
LINKS
Christopher Hunt Gribble, Table of n, a(n) for n = 1..20000
EXAMPLE
The table lists values of n, q, 2k and p for 1 <= n <= 20.
.n q 2k p (a(n))
.1 5 2 11
.2 11 2 23
.3 7 4 29
.4 23 2 47
.5 13 4 53
.6 29 2 59
.7 11 6 67
.8 13 6 79
.9 41 2 83
10 11 8 89
11 17 6 103
12 53 2 107
13 13 10 131
14 17 8 137
15 23 6 139
16 37 4 149
17 83 2 167
18 43 4 173
19 89 2 179
20 19 10 191
MAPLE
ppgen := proc (n)
local i, j, k, nprimes, p1a, p1b, p1b_ind, pless, pless_idx, p1b_ind_num_0, p1b_ind_num_1;
pless := {};
for i from 3 to n do
if isprime(i) then
pless := `union`(pless, {i})
end if
end do;
nprimes := numelems(pless);
p1b_ind := Vector(nprimes);
for j to nprimes do
p1a := pless[j];
if (1/2)*pless[-1]+1/2 < p1a then
break
end if;
for k to (1/2)*p1a-3/2 do
p1b := 2*k*p1a+1;
if member(p1b, pless, 'pless_idx') then
p1b_ind[pless_idx] := 1
elif pless[-1] < p1b then
break
end if
end do
end do;
p1b_ind_num_0 := 1;
p1b_ind_num_1 := 0;
for i to nprimes do
if p1b_ind[i] = 0 then
p1b_ind_num_0 := p1b_ind_num_0+1
else
p1b_ind_num_1 := p1b_ind_num_1+1;
fprintf(fop, "%d %d\n", p1b_ind_num_1, pless[i])
end if
end do
end proc;
n := 376200;
ppgen(n);
PROG
(PARI) is(n)=my(f=factor(n\2)[, 1]); for(i=1, #f, if(n\2/f[i]*2<=f[i]-3, return(isprime(n)))); 0 \\ Charles R Greathouse IV, Jul 15 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Christopher Hunt Gribble, Jun 30 2015
STATUS
approved