login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136001
Primes in A136000.
2
11, 23, 29, 47, 59, 71, 79, 83, 89, 107, 131, 139, 149, 167, 179, 181, 191, 197, 199, 223, 227, 233, 239, 251, 263, 269, 307, 311, 347, 349, 359, 373, 379, 383, 389, 419, 431, 439, 443, 449, 461, 467, 479, 491, 503, 509, 563, 569, 571, 587, 593, 599, 607, 643
OFFSET
1,1
EXAMPLE
a(1) = 11 because 11 is prime and {3,4,5} is a Pythagorean triple and 3+4+5 = 12 is the sum of a Pythagorean triple and 11+1 = 12, then we can write 3+4+5 = 11+1.
MAPLE
isprPer := proc(p) local dvs, m, n ; if p mod 2 = 1 then RETURN(false) ; fi ; dvs := p/2 ; for m in numtheory[divisors](dvs) do n := dvs/m-m ; if n > 0 and n < m then RETURN(true) ; fi ; od: RETURN(false) ; end: isA010814 := proc(n) local d; for d in numtheory[divisors](n) do if isprPer(n/d) then RETURN(true) ; fi ; od: RETURN(false) ; end: isA136000 := proc(n) isA010814(n+1) ; end: isA136001 := proc(n) isprime(n) and isA136000(n) ; end: for n from 2 to 600 do if isA136001(n) then printf("%d, ", n) ; fi: od: # R. J. Mathar, Dec 12 2007
MATHEMATICA
q[n_] := PrimeQ[n] && Module[{d = Divisors[(n+1)/2]}, AnyTrue[Range[3, Length[d]], d[[#]] < 2 * d[[#-1]] &]]; Select[Range[650], q] (* Amiram Eldar, Oct 19 2024 *)
CROSSREFS
Cf. A136000, A136003, A009096 (perimeters of Pythagorean triangles).
Sequence in context: A247228 A243461 A259560 * A158203 A161754 A038904
KEYWORD
nonn
AUTHOR
Omar E. Pol, Dec 10 2007
EXTENSIONS
More terms from R. J. Mathar, Dec 12 2007
Extended by Ray Chandler, Dec 13 2008
STATUS
approved