OFFSET
1,3
COMMENTS
Except for a(6)=10 and a(9)=40, it seems that a(n) is a Lucas number.
Except for a(3)=2, a(6)=10 and a(9)=40, it seems that a(n)^2+2 is a Lucas number.
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (3,-1).
FORMULA
a(n+6) = A002878(n) for n>=4.
a(n) = 3*a(n-1)-a(n-2) for n>11. - Colin Barker, Jun 30 2015
G.f.: x^2*(11*x^9-15*x^8-36*x^7+6*x^6-15*x^5+x^4-3*x^3-2*x^2-x+1) / (x^2-3*x+1). - Colin Barker, Jun 30 2015
EXAMPLE
0^2+2 = 2 = 1*2 = F(1)*L(0);
1^2+2 = 3 = 1*3 = F(1)*L(2);
2^2+2 = 6 = 2*3 = F(3)*L(2);
3^2+2 = 11 = 1*11 = F(1)*L(5);
4^2+2 = 18 = 1*18 = F(1)*L(6);
10^2+2 = 102 = 34*3 = F(9)*L(2).
MAPLE
with(combinat, fibonacci):nn:=100:lst:={}:
a:=n->2*fibonacci(n-1)+fibonacci(n):
for i from 0 to nn do:
for j from 0 to nn do:
x:=sqrt(a(i)*fibonacci(j)-2):
if x=floor(x) then lst:=lst union {x}:
else fi:
od:
od:
print(lst):
MATHEMATICA
LinearRecurrence[{3, -1}, {0, 1, 2, 3, 4, 10, 11, 29, 40, 76, 199}, 50] (* Paolo Xausa, Jul 15 2024 *)
PROG
(PARI) concat(0, Vec(x^2*(11*x^9-15*x^8-36*x^7+6*x^6-15*x^5+x^4-3*x^3-2*x^2-x+1)/(x^2-3*x+1) + O(x^50))) \\ Colin Barker, Jun 30 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michel Lagneau, Jun 30 2015
STATUS
approved