The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259503 Numbers k such that k^2+1 is the product of a Fibonacci number and a Lucas number. 1
0, 1, 2, 3, 5, 12, 133 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Conjecture: the sequence is finite.
No more terms below 25*10^4. - Robert G. Wilson v, Jul 06 2015
No more terms below 10^7. - Manfred Scheucher, Aug 03 2015
LINKS
Manfred Scheucher, Sage Script
EXAMPLE
0^2+1 = 1 = 1*1 = F(1)*L(1);
1^2+1 = 2 = 2*1 = F(3)*L(1);
2^2+1 = 5 = 5*1 = F(5)*L(1);
3^2+1 = 10 = 5*2 = F(5)*L(0);
5^2+1 = 26 = 13*2 = F(7)*L(0);
12^2+1 = 145 = 5*29 = F(5)*L(7);
133^2+1 = 17690 = 610*29 = F(15)*L(7).
MAPLE
with(combinat, fibonacci):nn:=200:lst:={}:
a:=n->2*fibonacci(n-1)+fibonacci(n):
for i from 0 to nn do:
for j from 0 to nn do:
x:=sqrt(a(i)*fibonacci(j)-1):
if x=floor(x) then lst:=lst union {x}:
else fi:
od:
od:
print(lst):
MATHEMATICA
fibQ[n_] := (Fibonacci@ Round@ Log[ GoldenRatio, n*Sqrt@ 5 == n); fQ[n_] := Block[{k = 0, l}, While[l = LucasL@ k; l < n^2 + 2 && ! fibQ[(n^2 + 1)/l], k++]; If[l < 2 + n^2, True, False]]; k = 0; lst = {}; While[k < 250001, If[ fQ@ k, AppendTo[lst, k]; Print[k]]; k++]; lst (* Robert G. Wilson v, Jul 06 2015 *)
CROSSREFS
Sequence in context: A301929 A107475 A108225 * A193064 A133832 A328997
KEYWORD
nonn,more
AUTHOR
Michel Lagneau, Jun 29 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 22:21 EDT 2024. Contains 373391 sequences. (Running on oeis4.)