login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259505
Primes p where an integer r with 1 < r < p exists such that r^r == 1 (mod p^2).
0
997, 8647, 47521, 85991, 283411, 4594451, 5476381, 52728733, 53920829, 100980223, 127072849, 436118521, 585293099, 858905011
OFFSET
1,1
COMMENTS
Inspired by the Nov 28 2014 comment from Thomas Ordowski in A001220.
a(5) > 276929 if it exists.
a(15) > 10^9. - Hiroaki Yamanouchi, Dec 19 2015
EXAMPLE
252^252 = 1 mod 997^2.
5764^5764 = 1 mod 8647^2.
MATHEMATICA
p = 2; lst = {}; While[p < 100001, r = 2; While[r < p, If[ PowerMod[r, r, p^2] == 1, AppendTo[lst, p]]; r++]; p = NextPrime@ p] (* Robert G. Wilson v, Dec 06 2015 *)
PROG
(PARI) forprime(p=1, , for(r=2, p-1, if(Mod(r, p^2)^r==1, print1(p, ", "); break({1}))))
CROSSREFS
Sequence in context: A244546 A091365 A235165 * A372046 A317594 A226752
KEYWORD
nonn,hard,more
AUTHOR
Felix Fröhlich, Nov 08 2015
EXTENSIONS
a(5)-a(14) from Hiroaki Yamanouchi, Dec 19 2015
STATUS
approved