OFFSET
0,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..446
L. Comtet, Sur les coefficients de l'inverse de la série formelle Sum n! t^n, Comptes Rend. Acad. Sci. Paris, A 275 (1972), 569-572.
L. Comtet, Series inversions, C. R. Acad. Sc. Paris, t. 275 (25 septembre 1972), 569-572. (Annotated scanned copy)
R. K. Guy, Letter to N. J. A. Sloane, Mar 1974
FORMULA
From Vaclav Kotesovec, Aug 12 2015: (Start)
G.f.: (1/Sum(k! x^k))^2.
Expansion of (1-g(x))^2, where g(x) is the g.f. of A003319.
a(n) ~ -2*n! * (1 - 3/n - 4/n^3 - 33/n^4 - 283/n^5 - 2785/n^6 - 31291/n^7 - 395360/n^8 - 5544754/n^9 - 85427259/n^10), for coefficients see A261214.
For n>0, a(n) = Sum_{k=1..n} A260503(k) * Stirling1(n-1, k-1).
(End)
EXAMPLE
MATHEMATICA
CoefficientList[Series[1/Sum[k! * x^k, {k, 0, 20}]^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Aug 03 2015 *)
CoefficientList[Assuming[Element[x, Reals], Series[E^(2/x) * x^2 / ExpIntegralEi[1/x]^2, {x, 0, 25}]], x] (* Vaclav Kotesovec, Aug 03 2015 *)
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Jul 03 2015, following a suggestion from R. K. Guy, Apr 29 1974
EXTENSIONS
More terms from Vaclav Kotesovec, Aug 01 2015
New name from Vaclav Kotesovec, Aug 12 2015
Entry revised by Vaclav Kotesovec, Aug 12 2015
STATUS
approved