login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259472
Coefficients in an asymptotic expansion of A003319(n)/n! in falling factorials.
8
1, -2, -1, -4, -19, -110, -745, -5752, -49775, -476994, -5016069, -57462828, -712732987, -9521244982, -136356161873, -2084860795232, -33907076207495, -584602069590058, -10652917092110429, -204604743619641620, -4131502481607654739, -87507494737954740126
OFFSET
0,2
LINKS
L. Comtet, Sur les coefficients de l'inverse de la série formelle Sum n! t^n, Comptes Rend. Acad. Sci. Paris, A 275 (1972), 569-572.
L. Comtet, Series inversions, C. R. Acad. Sc. Paris, t. 275 (25 septembre 1972), 569-572. (Annotated scanned copy)
FORMULA
From Vaclav Kotesovec, Aug 12 2015: (Start)
G.f.: (1/Sum(k! x^k))^2.
Expansion of (1-g(x))^2, where g(x) is the g.f. of A003319.
a(n) ~ -2*n! * (1 - 3/n - 4/n^3 - 33/n^4 - 283/n^5 - 2785/n^6 - 31291/n^7 - 395360/n^8 - 5544754/n^9 - 85427259/n^10), for coefficients see A261214.
For n>0, a(n) = A059439(n) - 2*A003319(n).
For n>0, a(n) = Sum_{k=1..n} A260503(k) * Stirling1(n-1, k-1).
(End)
EXAMPLE
A003319(n) / n! ~ 1 - 2/n - 1/(n*(n-1)) - 4/(n*(n-1)*(n-2)) - 19/(n*(n-1)*(n-2)*(n-3)) - 110/(n*(n-1)*(n-2)*(n-3)*(n-4)) - 745/(n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)) - ... [coefficients are A259472]
A003319(n) / n! ~ 1 - 2/n - 1/n^2 - 5/n^3 - 32/n^4 - 253/n^5 - 2381/n^6 - ... [coefficients are A260503]
MATHEMATICA
CoefficientList[Series[1/Sum[k! * x^k, {k, 0, 20}]^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Aug 03 2015 *)
CoefficientList[Assuming[Element[x, Reals], Series[E^(2/x) * x^2 / ExpIntegralEi[1/x]^2, {x, 0, 25}]], x] (* Vaclav Kotesovec, Aug 03 2015 *)
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Jul 03 2015, following a suggestion from R. K. Guy, Apr 29 1974
EXTENSIONS
More terms from Vaclav Kotesovec, Aug 01 2015
New name from Vaclav Kotesovec, Aug 12 2015
Entry revised by Vaclav Kotesovec, Aug 12 2015
STATUS
approved