OFFSET
0,5
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325
S. A. Choudum, K. R. Parthasarathy, Semi-regular relations and digraphs, Nederl. Akad. Wetensch. Proc. Ser. A. {75}=Indag. Math. 34 (1972), 326-334.
FORMULA
T(n,k) = T(n,n-k). - Andrew Howroyd, Sep 13 2020
EXAMPLE
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 7, 7, 1;
1, 19, 66, 19, 1;
1, 47, 916, 916, 47, 1;
1, 130, 16816, 91212, 16816, 130, 1;
...
MATHEMATICA
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_, k_] := Product[SeriesCoefficient[Product[g = GCD[v[[i]], v[[j]] ]; (1 + x^(v[[j]]/g) + O[x]^(k + 1))^g, {j, 1, Length[v]}], {x, 0, k}], {i, 1, Length[v]}];
T[n_, k_] := Module[{s = 0}, Do[s += permcount[p]*edges[p, k], {p, IntegerPartitions[n]}]; s/n!];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 08 2021, after Andrew Howroyd *)
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, k)={prod(i=1, #v, polcoef(prod(j=1, #v, my(g=gcd(v[i], v[j])); (1 + x^(v[j]/g) + O(x*x^k))^g), k))}
T(n, k)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p, k)); s/n!} \\ Andrew Howroyd, Sep 13 2020
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jul 03 2015
EXTENSIONS
Terms a(28) and beyond from Andrew Howroyd, Sep 13 2020
STATUS
approved