login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259471
Triangle read by rows: T(n,k) is the number of semi-regular relations on n nodes with each node having out-degree k (0 <= k <= n).
3
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 19, 66, 19, 1, 1, 47, 916, 916, 47, 1, 1, 130, 16816, 91212, 16816, 130, 1, 1, 343, 373630, 12888450, 12888450, 373630, 343, 1, 1, 951, 9727010, 2411213698, 14334255100, 2411213698, 9727010, 951, 1, 1, 2615, 289374391, 575737451509, 22080097881081, 22080097881081, 575737451509, 289374391, 2615, 1
OFFSET
0,5
LINKS
S. A. Choudum, K. R. Parthasarathy, Semi-regular relations and digraphs, Nederl. Akad. Wetensch. Proc. Ser. A. {75}=Indag. Math. 34 (1972), 326-334.
FORMULA
T(n,k) = T(n,n-k). - Andrew Howroyd, Sep 13 2020
EXAMPLE
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 7, 7, 1;
1, 19, 66, 19, 1;
1, 47, 916, 916, 47, 1;
1, 130, 16816, 91212, 16816, 130, 1;
...
MATHEMATICA
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_, k_] := Product[SeriesCoefficient[Product[g = GCD[v[[i]], v[[j]] ]; (1 + x^(v[[j]]/g) + O[x]^(k + 1))^g, {j, 1, Length[v]}], {x, 0, k}], {i, 1, Length[v]}];
T[n_, k_] := Module[{s = 0}, Do[s += permcount[p]*edges[p, k], {p, IntegerPartitions[n]}]; s/n!];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 08 2021, after Andrew Howroyd *)
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, k)={prod(i=1, #v, polcoef(prod(j=1, #v, my(g=gcd(v[i], v[j])); (1 + x^(v[j]/g) + O(x*x^k))^g), k))}
T(n, k)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p, k)); s/n!} \\ Andrew Howroyd, Sep 13 2020
CROSSREFS
Columns k=1..3 are A001372, A003286, A005535.
Cf. A329228.
Sequence in context: A059328 A174387 A176791 * A220555 A369559 A373398
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jul 03 2015
EXTENSIONS
Terms a(28) and beyond from Andrew Howroyd, Sep 13 2020
STATUS
approved