login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005535
Number of semi-regular digraphs (with loops) on n unlabeled nodes with each node having out-degree 3.
(Formerly M5081)
2
1, 19, 916, 91212, 12888450, 2411213698, 575737451509, 171049953499862, 61944438230597774, 26879022100485977540, 13773587720396658214925, 8231894671550187551622795, 5676740663627528580559535893, 4474748487205893704072253926113
OFFSET
3,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
S. A. Choudum and K. R. Parthasarathy, Semi-regular relations and digraphs, Nederl. Akad. Wetensch. Proc. Ser. A. {75}=Indag. Math. 34 (1972), 326-334.
MATHEMATICA
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_, k_] := Product[SeriesCoefficient[Product[g = GCD[v[[i]], v[[j]]]; (1 + x^(v[[j]]/g) + O[x]^(k + 1))^g, {j, 1, Length[v]}], {x, 0, k}], {i, 1, Length[v]}];
a[n_] := Module[{s = 0}, Do[s += permcount[p]*edges[p, 3], {p, IntegerPartitions[n]}]; s/n!];
Table[a[n], {n, 3, 20}] (* Jean-François Alcover, Jul 20 2022, after Andrew Howroyd in A259471 *)
CROSSREFS
Column k=3 of A259471.
Sequence in context: A217826 A209353 A368789 * A171226 A247279 A192569
KEYWORD
nonn,nice
EXTENSIONS
a(7) from Sean A. Irvine, Jul 07 2016
Terms a(8) and beyond from Andrew Howroyd, Sep 13 2020
STATUS
approved