login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of semi-regular relations on n nodes with each node having out-degree k (0 <= k <= n).
3

%I #16 Jan 08 2021 05:32:19

%S 1,1,1,1,3,1,1,7,7,1,1,19,66,19,1,1,47,916,916,47,1,1,130,16816,91212,

%T 16816,130,1,1,343,373630,12888450,12888450,373630,343,1,1,951,

%U 9727010,2411213698,14334255100,2411213698,9727010,951,1,1,2615,289374391,575737451509,22080097881081,22080097881081,575737451509,289374391,2615,1

%N Triangle read by rows: T(n,k) is the number of semi-regular relations on n nodes with each node having out-degree k (0 <= k <= n).

%H Andrew Howroyd, <a href="/A259471/b259471.txt">Table of n, a(n) for n = 0..1325</a>

%H S. A. Choudum, K. R. Parthasarathy, <a href="http://dx.doi.org/10.1016/1385-7258(72)90047-9">Semi-regular relations and digraphs</a>, Nederl. Akad. Wetensch. Proc. Ser. A. {75}=Indag. Math. 34 (1972), 326-334.

%F T(n,k) = T(n,n-k). - _Andrew Howroyd_, Sep 13 2020

%e Triangle begins:

%e 1;

%e 1, 1;

%e 1, 3, 1;

%e 1, 7, 7, 1;

%e 1, 19, 66, 19, 1;

%e 1, 47, 916, 916, 47, 1;

%e 1, 130, 16816, 91212, 16816, 130, 1;

%e ...

%t permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];

%t edges[v_, k_] := Product[SeriesCoefficient[Product[g = GCD[v[[i]], v[[j]] ]; (1 + x^(v[[j]]/g) + O[x]^(k + 1))^g, {j, 1, Length[v]}], {x, 0, k}], {i, 1, Length[v]}];

%t T[n_, k_] := Module[{s = 0}, Do[s += permcount[p]*edges[p, k], {p, IntegerPartitions[n]}]; s/n!];

%t Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jan 08 2021, after _Andrew Howroyd_ *)

%o (PARI)

%o permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}

%o edges(v,k)={prod(i=1, #v, polcoef(prod(j=1, #v, my(g=gcd(v[i],v[j])); (1 + x^(v[j]/g) + O(x*x^k))^g), k))}

%o T(n,k)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p,k)); s/n!} \\ _Andrew Howroyd_, Sep 13 2020

%Y Columns k=1..3 are A001372, A003286, A005535.

%Y Cf. A329228.

%K nonn,tabl

%O 0,5

%A _N. J. A. Sloane_, Jul 03 2015

%E Terms a(28) and beyond from _Andrew Howroyd_, Sep 13 2020