The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053565 a(n) = 2^(n-1)*(3*n-4). 3
 -2, -1, 4, 20, 64, 176, 448, 1088, 2560, 5888, 13312, 29696, 65536, 143360, 311296, 671744, 1441792, 3080192, 6553600, 13893632, 29360128, 61865984, 130023424, 272629760, 570425344, 1191182336, 2483027968, 5167382528, 10737418240 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..2000 Index entries for linear recurrences with constant coefficients, signature (4,-4). FORMULA a(n) = 4*a(n-1) - 4*a(n-2), with a(0) = -2, a(1) = -1. G.f.: -(2-7*x)/(1-2*x)^2. - Colin Barker, Apr 07 2012 E.g.f.: (3*x - 2)*exp(2*x). - G. C. Greubel, May 16 2019 MATHEMATICA Table[2^(n-1)*(3*n-4), {n, 0, 30}] (* G. C. Greubel, May 16 2019 *) PROG (Magma) [2^(n-1)*(3*n-4): n in [0..30]]; // Vincenzo Librandi, Sep 26 2011 (PARI) vector(30, n, n--; 2^(n-1)*(3*n-4)) \\ G. C. Greubel, May 16 2019 (Sage) [2^(n-1)*(3*n-4) for n in (0..30)] # G. C. Greubel, May 16 2019 (GAP) List([0..30], n-> 2^(n-1)*(3*n-4)) # G. C. Greubel, May 16 2019 CROSSREFS Cf. A023444. Cf. A027992, A048496. Sequence in context: A032105 A259472 A354055 * A116603 A354056 A158356 Adjacent sequences: A053562 A053563 A053564 * A053566 A053567 A053568 KEYWORD sign,easy AUTHOR Barry E. Williams, Jan 17 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 15:26 EST 2023. Contains 367540 sequences. (Running on oeis4.)