login
A053565
a(n) = 2^(n-1)*(3*n-4).
3
-2, -1, 4, 20, 64, 176, 448, 1088, 2560, 5888, 13312, 29696, 65536, 143360, 311296, 671744, 1441792, 3080192, 6553600, 13893632, 29360128, 61865984, 130023424, 272629760, 570425344, 1191182336, 2483027968, 5167382528, 10737418240
OFFSET
0,1
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
FORMULA
a(n) = 4*a(n-1) - 4*a(n-2), with a(0) = -2, a(1) = -1.
G.f.: -(2-7*x)/(1-2*x)^2. - Colin Barker, Apr 07 2012
E.g.f.: (3*x - 2)*exp(2*x). - G. C. Greubel, May 16 2019
MATHEMATICA
Table[2^(n-1)*(3*n-4), {n, 0, 30}] (* G. C. Greubel, May 16 2019 *)
PROG
(Magma) [2^(n-1)*(3*n-4): n in [0..30]]; // Vincenzo Librandi, Sep 26 2011
(PARI) vector(30, n, n--; 2^(n-1)*(3*n-4)) \\ G. C. Greubel, May 16 2019
(Sage) [2^(n-1)*(3*n-4) for n in (0..30)] # G. C. Greubel, May 16 2019
(GAP) List([0..30], n-> 2^(n-1)*(3*n-4)) # G. C. Greubel, May 16 2019
CROSSREFS
Cf. A023444.
Sequence in context: A259472 A354055 A375354 * A379612 A116603 A354056
KEYWORD
sign,easy
AUTHOR
Barry E. Williams, Jan 17 2000
STATUS
approved