|
|
A053565
|
|
a(n) = 2^(n-1)*(3*n-4).
|
|
3
|
|
|
-2, -1, 4, 20, 64, 176, 448, 1088, 2560, 5888, 13312, 29696, 65536, 143360, 311296, 671744, 1441792, 3080192, 6553600, 13893632, 29360128, 61865984, 130023424, 272629760, 570425344, 1191182336, 2483027968, 5167382528, 10737418240
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
REFERENCES
|
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 4*a(n-1) - 4*a(n-2), with a(0) = -2, a(1) = -1.
|
|
MATHEMATICA
|
Table[2^(n-1)*(3*n-4), {n, 0, 30}] (* G. C. Greubel, May 16 2019 *)
|
|
PROG
|
(PARI) vector(30, n, n--; 2^(n-1)*(3*n-4)) \\ G. C. Greubel, May 16 2019
(Sage) [2^(n-1)*(3*n-4) for n in (0..30)] # G. C. Greubel, May 16 2019
(GAP) List([0..30], n-> 2^(n-1)*(3*n-4)) # G. C. Greubel, May 16 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|