login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259190
Primes of the form sigma(n) + sigma(n)^2 - 1.
1
11, 19, 41, 71, 239, 181, 811, 599, 599, 991, 1559, 419, 599, 3659, 991, 3191, 929, 2351, 2969, 2351, 1481, 3659, 3191, 9311, 1979, 2351, 8741, 2969, 14519, 14519, 3659, 9311, 20879, 4691, 16001, 9311, 20879, 38219, 13109, 19739, 9311, 34781, 16001, 14519, 32579
OFFSET
1,1
COMMENTS
These primes are not sorted nor unique. They are listed in the order found.
LINKS
EXAMPLE
a(2) = 19: sigma(3) + sigma(3)^2 - 1 = 4 + 16 - 1 = 19, which is prime.
a(5) = 239: sigma(8) + sigma(8)^2 - 1 = 15 + 225 - 1 = 239, which is prime.
MAPLE
with(numtheory): A259190:= n-> (sigma(n) + sigma(n)^2-1): select(isprime, [seq((A259190 (n), n=1..500))]);
MATHEMATICA
Select[Table[DivisorSigma[1, n] + DivisorSigma[1, n]^2 - 1, {n, 1, 10000}], PrimeQ]
PROG
(PARI) for(n=1, 100, k=sigma(n)+sigma (n)^2-1; if(isprime(k), print1(k, ", "))); \\ K. D. Bajpai, Jun 20 2015
(Magma) [k: n in [1..100] | IsPrime(k) where k is SumOfDivisors(n)+ SumOfDivisors(n)^2-1]; // K. D. Bajpai, Jun 20 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Jun 20 2015
STATUS
approved