

A259191


Number of integral solutions to y^2 = x^3 + n*x^2 + n (with y nonnegative).


1



3, 0, 0, 4, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0, 1, 8, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 6, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 6, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

If n is square there are at least two solutions, corresponding to x = 0 and x = n. If n = 2^(2k) there are at least three solutions, corresponding to x = 0, x = 2^(2k), and x = 2^(6k2) + 2^(2k). If n = 2k^2 + 2k, there is at least one solution, corresponding to x = 1.


LINKS

Table of n, a(n) for n=1..82.


PROG

(Sage)
for i in range(1, 31):
E=EllipticCurve([0, i, 0, 0, i])
print(len(E.integral_points()))


CROSSREFS

Cf. A081119, A081120.
Sequence in context: A133109 A130208 A288654 * A240455 A304263 A305223
Adjacent sequences: A259188 A259189 A259190 * A259192 A259193 A259194


KEYWORD

nonn


AUTHOR

Morris Neene, Jun 20 2015


STATUS

approved



