login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259184
a(n) = 1 - sigma(n) + sigma(n)^2.
3
1, 7, 13, 43, 31, 133, 57, 211, 157, 307, 133, 757, 183, 553, 553, 931, 307, 1483, 381, 1723, 993, 1261, 553, 3541, 931, 1723, 1561, 3081, 871, 5113, 993, 3907, 2257, 2863, 2257, 8191, 1407, 3541, 3081, 8011, 1723, 9121, 1893, 6973, 6007, 5113, 2257, 15253
OFFSET
1,2
FORMULA
a(n) = 1 - A000203(n) + A000203(n)^2.
a(n) = 1 - A000203(n) + A072861(n). - Omar E. Pol, Jun 20 2015
a(n) = A002061(A000203(n)). - Michel Marcus, Jun 25 2015
MAPLE
with(numtheory): A259184:=n->1-sigma(n)+sigma(n)^2: seq(A259184(n), n=1..100); # Wesley Ivan Hurt, Jul 09 2015
MATHEMATICA
Table[1 - DivisorSigma[1, n] + DivisorSigma[1, n]^2, {n, 10000}]
Table[Cyclotomic[6, DivisorSigma[1, n]], {n, 10000}]
PROG
(PARI) a(n) = polcyclo(6, sigma(n)); \\ Michel Marcus, Jun 25 2015
CROSSREFS
Cf. A000203 (sum of divisors of n).
Cf. A259185 (indices of primes in this sequence), A259186 (corresponding primes).
Sequence in context: A330671 A097444 A241718 * A259186 A151781 A224502
KEYWORD
easy,nonn
AUTHOR
Robert Price, Jun 20 2015
STATUS
approved