OFFSET
0
COMMENTS
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1000
Christian Kassel and Christophe Reutenauer, On the Zeta Functions of Punctual Hilbert schemes of a Two-Dimensional Torus, arXiv:1505.07229 [math.AG], 2015, see page 31 7.2(d).
Michael Somos, Introduction to Ramanujan theta functions.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of (1 - phi(-x)) / 2 in powers of x where phi() is a Ramanujan theta function.
a(n) is multiplicative with a(2^e) = (-1)^(e/2) if e even, a(p^e) = 1 if p>2 and e even, otherwise 0.
G.f.: (1 - theta_4(x)) / 2 where theta_4() is a Jacobi theta function.
a(n) = ((-1)^(n+2^(n-(floor(sqrt(n)))^2))-(-1)^(n+2^n))/2. - Luce ETIENNE, Aug 31 2015
Dirichlet g.f.: zeta(2*s)*(4^s-1)/(4^s+1). - Amiram Eldar, Dec 29 2022
EXAMPLE
G.f. = x - x^4 + x^9 - x^16 + x^25 - x^36 + x^49 - x^64 + x^81 - x^100 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 0, If[ IntegerQ[ Sqrt @ n], -(-1)^n, 0]];
a[ n_] := SeriesCoefficient[ (1 - EllipticTheta[ 4, 0, x]) / 2, {x, 0, n}];
PROG
(PARI) {a(n) = if( n<1, 0, issquare(n), -(-1)^n, 0)};
(Magma) [((-1)^(n+2^(n-(Floor(Sqrt(n)))^2))-(-1)^(n+2^n))/2: n in [0..100]]; // Vincenzo Librandi, Sep 03 2015
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Michael Somos, Jun 16 2015
STATUS
approved