login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258995
Third pi-based antiderivative of n: the least m such that A258851^3(m) equals n.
6
0, 5, 11, 10, 4, 29, 35, 41, 14, 431, 599, 78, 15, 38, 201, 191, 25, 382, 186, 43, 19, 65, 94, 3001, 535, 22, 42, 633, 317, 4397, 21, 141, 8, 74, 574, 214, 1286, 61, 253, 247, 1417, 163, 115, 217, 66, 546, 138, 10631, 1997, 51, 12097, 12301, 362, 26, 563, 1013
OFFSET
0,2
LINKS
FORMULA
a(n) = min { m >= 0 : A258851^3(m) = n }.
A258851^3(a(n)) = A258853(a(n)) = n.
a(n) <= A000040^3(n) for n>0.
a(n) <= A258861^3(n).
MAPLE
with(numtheory):
d:= n-> n*add(i[2]*pi(i[1])/i[1], i=ifactors(n)[2]):
a:= proc() local t, a; t, a:= -1, proc() -1 end;
proc(n) local h;
while a(n) = -1 do
t:= t+1; h:= d(d(d(t)));
if a(h) = -1 then a(h):= t fi
od; a(n)
end
end():
seq(a(n), n=0..100);
MATHEMATICA
d[n_] := d[n] = If[n == 0, 0, n*Total[Last[#]*PrimePi[First[#]]/First[#] & /@ FactorInteger[n]]];
A[n_, k_] := For[m = 0, True, m++, If[Nest[d, m, k] == n, Return[m]]];
a[n_] := A[n, 3];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, May 17 2024 *)
CROSSREFS
Column k=3 of A259016.
Sequence in context: A185201 A378700 A112956 * A335554 A157801 A061768
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 16 2015
STATUS
approved