login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Third pi-based antiderivative of n: the least m such that A258851^3(m) equals n.
6

%I #11 May 18 2024 01:54:38

%S 0,5,11,10,4,29,35,41,14,431,599,78,15,38,201,191,25,382,186,43,19,65,

%T 94,3001,535,22,42,633,317,4397,21,141,8,74,574,214,1286,61,253,247,

%U 1417,163,115,217,66,546,138,10631,1997,51,12097,12301,362,26,563,1013

%N Third pi-based antiderivative of n: the least m such that A258851^3(m) equals n.

%H Alois P. Heinz, <a href="/A258995/b258995.txt">Table of n, a(n) for n = 0..10000</a>

%F a(n) = min { m >= 0 : A258851^3(m) = n }.

%F A258851^3(a(n)) = A258853(a(n)) = n.

%F a(n) <= A000040^3(n) for n>0.

%F a(n) <= A258861^3(n).

%p with(numtheory):

%p d:= n-> n*add(i[2]*pi(i[1])/i[1], i=ifactors(n)[2]):

%p a:= proc() local t, a; t, a:= -1, proc() -1 end;

%p proc(n) local h;

%p while a(n) = -1 do

%p t:= t+1; h:= d(d(d(t)));

%p if a(h) = -1 then a(h):= t fi

%p od; a(n)

%p end

%p end():

%p seq(a(n), n=0..100);

%t d[n_] := d[n] = If[n == 0, 0, n*Total[Last[#]*PrimePi[First[#]]/First[#] & /@ FactorInteger[n]]];

%t A[n_, k_] := For[m = 0, True, m++, If[Nest[d, m, k] == n, Return[m]]];

%t a[n_] := A[n, 3];

%t Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, May 17 2024 *)

%Y Column k=3 of A259016.

%Y Cf. A000040, A000720, A258851, A258853, A258861, A258862.

%K nonn

%O 0,2

%A _Alois P. Heinz_, Jun 16 2015