login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258892
Number of (n+2) X (6+2) 0..1 arrays with no 3 x 3 subblock diagonal sum less than the antidiagonal sum or central row sum less than the central column sum.
1
94249, 51188, 20164, 13221, 16384, 21025, 26244, 33485, 41616, 52425, 64516, 80053, 97344, 118961, 142884, 172125, 204304, 242905, 285156, 335045, 389376, 452673, 521284, 600301, 685584, 782825, 887364, 1005525, 1132096, 1274065, 1425636
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n>11.
Empirical for n mod 2 = 0: a(n) = n^4 + 10*n^3 + 182*n^2 + 802*n + 6205 for n>3.
Empirical for n mod 2 = 1: a(n) = n^4 + 10*n^3 + 181*n^2 + 780*n + 6084 for n>3.
Empirical g.f.: x*(94249 - 137310*x - 270710*x^2 + 436011*x^3 + 256742*x^4 - 482695*x^5 - 87878*x^6 + 207141*x^7 + 17437*x^8 - 23035*x^9 - 9760*x^10) / ((1 - x)^5*(1 + x)^3). - Colin Barker, Dec 23 2018
EXAMPLE
Some solutions for n=4:
..1..1..1..0..1..0..0..0....1..0..0..0..0..0..0..0....1..1..1..0..0..0..0..0
..1..1..1..1..1..1..1..1....1..0..1..0..1..0..0..0....1..1..0..1..0..1..0..1
..1..1..1..1..1..1..1..1....0..1..0..1..0..1..0..1....1..0..1..0..1..0..1..0
..1..1..1..1..1..1..1..1....1..0..1..0..1..0..1..1....1..1..0..1..0..1..0..1
..0..0..1..1..1..1..1..1....0..1..0..1..0..1..1..1....1..0..1..0..1..0..1..1
..0..0..0..1..1..1..1..1....0..0..1..0..1..0..1..1....0..0..0..1..0..1..1..1
CROSSREFS
Column 6 of A258894.
Sequence in context: A126708 A209514 A029754 * A204473 A031675 A254977
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 14 2015
STATUS
approved