login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258891
Number of (n+2) X (5+2) 0..1 arrays with no 3 x 3 subblock diagonal sum less than the antidiagonal sum or central row sum less than the central column sum.
1
30870, 23409, 12804, 9604, 12544, 16384, 21320, 27556, 35360, 44944, 56680, 70756, 87680, 107584, 131144, 158404, 190240, 226576, 268520, 315844, 369920, 430336, 498760, 574564, 659744, 753424, 857960, 972196, 1098880, 1236544, 1388360
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n>11.
Empirical for n mod 2 = 0: a(n) = n^4 + 10*n^3 + 149*n^2 + 620*n + 3844 for n>3.
Empirical for n mod 2 = 1: a(n) = n^4 + 10*n^3 + 150*n^2 + 610*n + 3869 for n>3.
Empirical g.f.: x*(30870 - 38331*x - 95754*x^2 + 122398*x^3 + 108182*x^4 - 136308*x^5 - 57626*x^6 + 59146*x^7 + 19844*x^8 - 6825*x^9 - 5404*x^10) / ((1 - x)^5*(1 + x)^3). - Colin Barker, Dec 23 2018
EXAMPLE
Some solutions for n=4:
..1..0..0..0..0..0..0....1..1..0..0..0..0..0....1..1..0..1..0..0..1
..0..0..0..0..0..0..0....1..1..0..1..0..1..0....1..0..1..0..1..0..0
..0..0..0..0..0..0..0....1..0..1..0..1..0..1....1..1..0..1..0..1..1
..0..0..0..0..0..0..1....1..1..0..1..0..1..0....1..0..1..0..1..0..1
..0..0..0..0..0..0..1....1..0..1..0..1..0..1....1..1..0..1..0..1..1
..0..0..0..0..0..0..1....1..1..0..1..0..1..0....0..0..1..0..1..1..1
CROSSREFS
Column 5 of A258894.
Sequence in context: A269828 A270057 A236899 * A237469 A071124 A250590
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 14 2015
STATUS
approved