login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258890
Number of (n+2) X (4+2) 0..1 arrays with no 3 x 3 subblock diagonal sum less than the antidiagonal sum or central row sum less than the central column sum.
1
10201, 10680, 8100, 7225, 9604, 13221, 17424, 23393, 30276, 39565, 50176, 63945, 79524, 99125, 121104, 148081, 178084, 214173, 254016, 301145, 352836, 413125, 478864, 554625, 636804, 730541, 831744, 946153, 1069156, 1207125, 1354896
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n>11.
Empirical for n mod 2 = 0: a(n) = n^4 + 10*n^3 + 122*n^2 + 498*n + 2385 for n>3.
Empirical for n mod 2 = 1: a(n) = n^4 + 10*n^3 + 121*n^2 + 480*n + 2304 for n>3.
Empirical g.f.: x*(10201 - 9722*x - 33662*x^2 + 30871*x^3 + 43034*x^4 - 33043*x^5 - 28554*x^6 + 12889*x^7 + 11977*x^8 - 883*x^9 - 2916*x^10) / ((1 - x)^5*(1 + x)^3). - Colin Barker, Dec 22 2018
EXAMPLE
Some solutions for n=4:
..0..1..0..0..0..1....0..1..0..1..0..1....1..0..0..0..0..0....1..0..1..0..0..1
..1..1..0..1..0..0....1..1..1..1..1..0....1..0..0..0..0..0....1..1..0..1..0..1
..1..0..1..0..1..1....1..1..1..1..1..1....0..0..0..0..0..1....1..0..1..0..1..1
..1..1..0..1..0..1....1..1..1..1..1..1....0..0..0..0..0..0....0..1..0..1..0..1
..1..0..1..0..1..1....0..1..1..1..1..1....0..0..0..0..0..1....0..0..1..0..1..1
..0..1..0..1..0..1....1..0..1..1..1..1....0..0..0..0..0..1....0..0..0..0..1..1
CROSSREFS
Column 4 of A258894.
Sequence in context: A221119 A105582 A243819 * A255872 A291925 A255880
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 14 2015
STATUS
approved