login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A126708 Prime numbers that are the sum of the cubes of three distinct primes with the same final digit. 1
93871, 100043, 159389, 161071, 236627, 240551, 297233, 325693, 409499, 456623, 468551, 524287, 550061, 583981, 614683, 617401, 653491, 705277, 722807, 800171, 968239, 1016839, 1040311, 1129013, 1172261, 1276039, 1317259, 1326277, 1379519 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000

EXAMPLE

93871 = 13^3 + 23^3 + 43^3 = 2197 + 12167 + 79507 is prime and 13, 23, 43 are primes with the same final digit, hence 93871 is a term.

617401 = 43^3 + 53^3 + 73^3 = 79507 + 148877 + 389017 is prime and 43, 53, 73 are primes with the same final digit, hence 617401 is a term.

14391 = 3^3 + 13^3 + 23^3 = 27 + 2197 + 12167 is not prime; although 3, 13, 23 are primes with the same final digit, 14391 is not in the sequence.

PROG

(PARI) {m=116; p=m^3; w=[]; forprime(i=1, m-2, r=i%10; forprime(j=i+1, m-1, forprime(k=j+1, m, if(j%10==r&&k%10==r&&(n=i^3+j^3+k^3)<p&&isprime(n), w=concat(w, n))))); w=vecsort(w); for(j=1, #w-1, print1(w[j], ", "))} /* Klaus Brockhaus, Feb 16 2007 */

CROSSREFS

Cf. A125516, A126657, A126658.

Sequence in context: A206683 A234215 A200216 * A209514 A029754 A258892

Adjacent sequences:  A126705 A126706 A126707 * A126709 A126710 A126711

KEYWORD

nonn,base

AUTHOR

Tomas Xordan, Feb 11 2007

EXTENSIONS

Edited, corrected and extended by Klaus Brockhaus, Feb 16 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 13:49 EDT 2020. Contains 337169 sequences. (Running on oeis4.)