login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126658
Prime numbers that are the sum of three distinct positive eighth powers.
4
72353, 1745153, 7444673, 44726593, 49202147, 61503553, 100006817, 100072097, 101686177, 107444417, 143046977, 214756067, 257412163, 430372577, 431661313, 435812033, 447149537, 452523713, 489805633, 530372321, 744340577, 834187553
OFFSET
1,1
COMMENTS
These are also the sum of three squares and the sum of three fourth powers: 7444673 = 16^2 + 1296^2 + 2401^2 = 4^4 + 36^4 + 49^4 = 256 + 1679616 + 5764801.
EXAMPLE
72353 = 2^8 + 3^8 + 4^8 = 256 + 6561 + 65536.
7444673 = 2^8 + 6^8 + 7^8 = 256 + 1679616 + 5764801.
49202147 = 5^8 + 7^8 + 9^8 = 390625 + 5764801 + 43046721.
PROG
(PARI) {m=14; p=m^8; v=vector(m, x, x^8); w=[]; for(i=1, m-2, for(j=i+1, m-1, for(k=j+1, m, if((n=v[i]+v[j]+v[k])<p&&isprime(n), w=concat(w, n))))); w=listsort(List(w), 1); for(j=1, #w-1, print1(w[j], ", "))} /* Klaus Brockhaus, Feb 11 2007 */
CROSSREFS
Sequence in context: A257206 A229322 A269320 * A251340 A183788 A369238
KEYWORD
nonn
AUTHOR
Tomas Xordan, Feb 09 2007
EXTENSIONS
Edited, corrected and extended by Klaus Brockhaus, Feb 11 2007
STATUS
approved