login
A369238
Tetraprime numbers differing by more than 3 from any other squarefree number.
1
72474, 106674, 193026, 237522, 261478, 308649, 342066, 370785, 391674, 491322, 604878, 865974, 885477, 931022, 938598, 1005630, 1070727, 1152822, 1186926, 1206822, 1289978, 1306878, 1363326, 1371774, 1392726, 1412918, 1455249, 1528111, 1634227, 1654678, 1688478
OFFSET
1,1
COMMENTS
Tetraprimes are the product of four distinct prime numbers (cf. A046386).
LINKS
EXAMPLE
72474 = 2 * 3 * 47 * 257 is a tetraprime; 72471 = 3 * 7^2 * 17 * 29, 72472 = 2^3 * 9059, 72473 = 23^2 * 137, 72475 = 5^2 * 13 * 223, 72476 = 2^2 * 18119, 72477 = 3^2 * 8053 are all nonsquarefree numbers, so 72474 is a term.
MAPLE
N:= 3*10^6: # for terms <= N
P:= select(isprime, [2, seq(i, i=3 .. N/30, 2)]): nP:= nops(P):
filter:= proc(x) not ormap(numtheory:-issqrfree, [x-3, x-2, x-1, x+1, x+2, x+3]) end proc:
R:= NULL:
for i1 from 1 to nP do
r1:= P[i1];
for i2 from 1 to i1-1 do
r2:= r1 * P[i2]; if r2 > N/6 then break fi;
for i3 from 1 to i2-1 do
r3:= r2 * P[i3]; if r3 > N/2 then break fi;
for i4 from 1 to i3-1 do
r:= r3 * P[i4];
if r > N then break fi;
if filter(r) then R:= R, r; fi
od od od od:
sort([R]); # Robert Israel, Jan 19 2025
MATHEMATICA
f[n_] := Module[{e = FactorInteger[n][[;; , 2]], p}, p = Times @@ e; If[p > 1, 0, If[e == {1, 1, 1, 1}, 1, -1]]]; SequencePosition[Array[f, 2*10^6], {0, 0, 0, 1, 0, 0, 0}][[;; , 1]] + 3 (* Amiram Eldar, Jan 19 2024 *)
CROSSREFS
Cf. A046386, A013929. Subsequence of A268332.
Sequence in context: A126658 A251340 A183788 * A093212 A114258 A238151
KEYWORD
nonn
AUTHOR
Massimo Kofler, Jan 19 2024
STATUS
approved