login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258650
Tenth arithmetic derivative of n.
3
0, 0, 0, 0, 4, 0, 0, 0, 8592, 0, 0, 0, 20096, 0, 0, 3424, 70464, 0, 0, 0, 16304, 0, 0, 0, 32624, 0, 1520, 27, 70464, 0, 0, 0, 235072, 0, 0, 8592, 47872, 0, 0, 20096, 24640, 0, 0, 0, 65264, 8592, 0, 0, 130544, 0, 3424, 8144, 47872, 0, 57996, 20096, 198656, 0, 0
OFFSET
0,5
LINKS
FORMULA
a(n) = A003415^10(n).
MAPLE
d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
A:= proc(n, k) option remember; `if`(k=0, n, d(A(n, k-1))) end:
a:= n-> A(n, 10):
seq(a(n), n=0..70);
PROG
(Python)
from sympy import factorint
def A258650(n):
for _ in range(10):
if n <= 1: return 0
n = sum((n*e//p for p, e in factorint(n).items()))
return n # Chai Wah Wu, Nov 03 2022
CROSSREFS
Column k=10 of A258651.
Cf. A003415.
Sequence in context: A258648 A185232 A258649 * A156393 A335510 A331438
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 06 2015
STATUS
approved