login
A258649
Ninth arithmetic derivative of n.
3
0, 0, 0, 0, 4, 0, 0, 0, 3424, 0, 0, 0, 8592, 0, 0, 1520, 20096, 0, 0, 0, 8144, 0, 0, 0, 16304, 0, 752, 27, 20096, 0, 0, 0, 70464, 0, 0, 3424, 22288, 0, 0, 8592, 7744, 0, 0, 0, 32624, 3424, 0, 0, 65264, 0, 1520, 3120, 22288, 0, 23112, 8592, 47872, 0, 0, 0, 47872
OFFSET
0,5
LINKS
FORMULA
a(n) = A003415^9(n).
MAPLE
d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
A:= proc(n, k) option remember; `if`(k=0, n, d(A(n, k-1))) end:
a:= n-> A(n, 9):
seq(a(n), n=0..70);
PROG
(Python)
from sympy import factorint
def A258649(n):
for _ in range(9):
if n <= 1: return 0
n = sum((n*e//p for p, e in factorint(n).items()))
return n # Chai Wah Wu, Nov 03 2022
CROSSREFS
Column k=9 of A258651.
Cf. A003415.
Sequence in context: A013334 A258648 A185232 * A258650 A156393 A335510
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 06 2015
STATUS
approved