login
A258553
Number of (n+1) X (7+1) 0..1 arrays with every 2 X 2 subblock ne-sw antidiagonal difference nondecreasing horizontally and nw+se diagonal sum nondecreasing vertically.
1
2008, 894, 2542, 4313, 8612, 13833, 21653, 31254, 43655, 57928, 75822, 96565, 121226, 148915, 181429, 218044, 259877, 306086, 358516, 416491, 481176, 551777, 630187, 715778, 809763, 911396, 1022618, 1142849, 1273350, 1413423, 1565057
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - 4*a(n-5) + 6*a(n-6) - 4*a(n-7) + a(n-8) for n>15.
Empirical g.f.: x*(2008 - 7138*x + 11014*x^2 - 8523*x^3 + 3036*x^4 + 3127*x^5 - 7731*x^6 + 6028*x^7 - 3207*x^8 + 2064*x^9 - 606*x^10 - 26*x^11 + 4*x^12 - 12*x^13 + 10*x^14) / ((1 - x)^5*(1 + x)*(1 + x^2)). - Colin Barker, Dec 22 2018
EXAMPLE
Some solutions for n=4:
..0..0..0..0..0..0..0..1....0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..1
..1..0..0..0..0..0..0..1....1..1..0..0..0..0..0..0....1..0..0..0..0..0..0..1
..0..0..0..0..0..0..0..1....1..0..0..0..0..0..0..1....1..0..0..0..0..0..0..1
..1..1..1..1..1..1..1..1....1..1..1..1..1..1..1..1....1..0..0..0..0..0..0..1
..1..1..1..1..0..0..0..0....1..1..1..1..1..1..1..1....1..1..1..0..0..0..0..1
CROSSREFS
Column 7 of A258554.
Sequence in context: A250922 A201343 A219083 * A258560 A281987 A172735
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 03 2015
STATUS
approved