login
A258555
Number of (2+1) X (n+1) 0..1 arrays with every 2 X 2 subblock ne-sw antidiagonal difference nondecreasing horizontally and nw+se diagonal sum nondecreasing vertically.
1
44, 112, 210, 344, 506, 683, 894, 1140, 1421, 1725, 2071, 2460, 2892, 3355, 3868, 4432, 5047, 5701, 6413, 7184, 8014, 8891, 9834, 10844, 11921, 13053, 14259, 15540, 16896, 18315, 19816, 21400, 23067, 24805, 26633, 28552, 30562, 32651, 34838, 37124, 39509
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-4) - 3*a(n-5) + 3*a(n-6) - a(n-7) for n>10.
Empirical g.f.: x*(44 - 20*x + 6*x^2 + 6*x^3 - 52*x^4 + 7*x^5 + 13*x^6 - 5*x^7 + 8*x^8 + x^9) / ((1 - x)^4*(1 + x)*(1 + x^2)). - Colin Barker, Dec 22 2018
EXAMPLE
Some solutions for n=4:
..1..0..0..1..1....1..0..0..0..1....1..0..0..0..0....1..0..0..1..1
..1..0..0..0..0....1..0..0..0..0....1..0..0..0..1....0..0..1..1..1
..1..1..1..1..1....1..1..1..1..1....1..1..1..1..1....0..1..1..0..1
CROSSREFS
Row 2 of A258554.
Sequence in context: A118483 A044231 A044612 * A258548 A036198 A094128
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 03 2015
STATUS
approved