login
A258551
Number of (n+1) X (5+1) 0..1 arrays with every 2 X 2 subblock ne-sw antidiagonal difference nondecreasing horizontally and nw+se diagonal sum nondecreasing vertically.
1
480, 506, 1403, 2509, 5070, 8339, 12940, 18630, 26240, 35386, 46687, 59945, 76039, 94633, 116394, 141172, 169894, 202272, 239021, 280039, 326301, 377567, 434600, 497346, 566828, 642854, 726235, 816965, 916115, 1023541, 1140102, 1265840
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - 4*a(n-5) + 6*a(n-6) - 4*a(n-7) + a(n-8) for n>13.
Empirical g.f.: x*(480 - 1414*x + 2259*x^2 - 1987*x^3 + 1428*x^4 - 579*x^5 - 888*x^6 + 1120*x^7 - 834*x^8 + 778*x^9 - 368*x^10 + 50*x^11 + 3*x^12) / ((1 - x)^5*(1 + x)*(1 + x^2)). - Colin Barker, Dec 21 2018
EXAMPLE
Some solutions for n=4:
..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0
..1..1..0..0..0..0....1..1..1..1..1..1....0..0..0..0..0..0....0..0..0..0..0..0
..1..0..0..0..0..1....0..0..0..0..0..0....0..0..0..0..0..1....0..0..0..0..0..1
..1..1..1..1..0..1....1..1..1..1..1..1....1..1..1..1..1..1....1..1..0..0..1..1
..1..1..1..0..1..1....1..0..0..0..0..1....1..0..0..0..0..0....1..0..0..1..1..1
CROSSREFS
Column 5 of A258554.
Sequence in context: A262222 A115157 A019287 * A257415 A179667 A108876
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 03 2015
STATUS
approved