login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258551
Number of (n+1) X (5+1) 0..1 arrays with every 2 X 2 subblock ne-sw antidiagonal difference nondecreasing horizontally and nw+se diagonal sum nondecreasing vertically.
1
480, 506, 1403, 2509, 5070, 8339, 12940, 18630, 26240, 35386, 46687, 59945, 76039, 94633, 116394, 141172, 169894, 202272, 239021, 280039, 326301, 377567, 434600, 497346, 566828, 642854, 726235, 816965, 916115, 1023541, 1140102, 1265840
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - 4*a(n-5) + 6*a(n-6) - 4*a(n-7) + a(n-8) for n>13.
Empirical g.f.: x*(480 - 1414*x + 2259*x^2 - 1987*x^3 + 1428*x^4 - 579*x^5 - 888*x^6 + 1120*x^7 - 834*x^8 + 778*x^9 - 368*x^10 + 50*x^11 + 3*x^12) / ((1 - x)^5*(1 + x)*(1 + x^2)). - Colin Barker, Dec 21 2018
EXAMPLE
Some solutions for n=4:
..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0
..1..1..0..0..0..0....1..1..1..1..1..1....0..0..0..0..0..0....0..0..0..0..0..0
..1..0..0..0..0..1....0..0..0..0..0..0....0..0..0..0..0..1....0..0..0..0..0..1
..1..1..1..1..0..1....1..1..1..1..1..1....1..1..1..1..1..1....1..1..0..0..1..1
..1..1..1..0..1..1....1..0..0..0..0..1....1..0..0..0..0..0....1..0..0..1..1..1
CROSSREFS
Column 5 of A258554.
Sequence in context: A262222 A115157 A019287 * A257415 A179667 A108876
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 03 2015
STATUS
approved