login
A258560
Number of (7+1) X (n+1) 0..1 arrays with every 2 X 2 subblock ne-sw antidiagonal difference nondecreasing horizontally and nw+se diagonal sum nondecreasing vertically.
1
2008, 4667, 6348, 9688, 12940, 16942, 21653, 26628, 31806, 37351, 43158, 49004, 54998, 61394, 68087, 74854, 81804, 89191, 96910, 104738, 112784, 121302, 130187, 139216, 148498, 158287, 168478, 178848, 189506, 200706, 212343, 224194, 236368
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-4) - 3*a(n-5) + 3*a(n-6) - a(n-7) for n>14.
Empirical g.f.: x*(2008 - 1357*x - 1629*x^2 + 2637*x^3 - 3755*x^4 + 2195*x^5 + 1588*x^6 - 3082*x^7 + 1686*x^8 - 674*x^9 - 64*x^10 + 222*x^11 + 170*x^12 + 90*x^13) / ((1 - x)^4*(1 + x)*(1 + x^2)). - Colin Barker, Dec 22 2018
EXAMPLE
Some.solutions.for.n=4:
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..1....0..0..0..0..1
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..1....1..0..0..0..0
..1..0..0..0..0....0..0..0..0..1....0..0..0..0..1....1..0..0..0..0
..1..0..0..0..0....0..0..0..0..1....1..0..0..0..1....1..0..0..0..0
..1..0..0..0..0....1..0..0..0..1....1..0..0..0..1....1..0..0..0..0
..1..0..0..0..0....1..0..0..1..1....1..0..0..1..1....0..0..0..0..0
..1..0..0..0..1....1..1..1..1..0....1..0..1..1..1....1..1..1..1..1
..1..1..1..1..1....1..1..1..0..0....0..1..1..1..1....1..1..1..0..1
CROSSREFS
Row 7 of A258554.
Sequence in context: A201343 A219083 A258553 * A281987 A172735 A172780
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 03 2015
STATUS
approved