login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258559
Number of (6+1) X (n+1) 0..1 arrays with every 2 X 2 subblock ne-sw antidiagonal difference nondecreasing horizontally and nw+se diagonal sum nondecreasing vertically.
1
988, 2530, 3980, 6196, 8339, 10854, 13833, 17058, 20414, 23858, 27446, 31237, 35188, 39256, 43497, 47970, 52632, 57440, 62450, 67721, 73210, 78874, 84769, 90954, 97386, 104022, 110918, 118133, 125624, 133348, 141361, 149722, 158388, 167316, 176562
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-4) - 3*a(n-5) + 3*a(n-6) - a(n-7) for n>13.
Empirical g.f.: x*(988 - 434*x - 646*x^2 + 858*x^3 - 1827*x^4 + 879*x^5 + 738*x^6 - 1076*x^7 + 724*x^8 - 488*x^9 - 36*x^10 + 277*x^11 + 72*x^12) / ((1 - x)^4*(1 + x)*(1 + x^2)). - Colin Barker, Dec 22 2018
EXAMPLE
Some solutions for n=4:
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..0..0..0..0....0..0..0..0..1....1..0..0..0..0....0..0..0..0..1
..0..0..0..0..0....0..0..0..0..1....1..0..0..0..0....1..0..0..0..1
..1..0..0..0..0....0..0..0..0..1....1..0..0..0..0....1..0..0..0..1
..1..0..0..0..1....0..0..0..1..1....0..0..0..0..1....0..0..0..0..1
..1..1..1..1..1....1..1..1..1..0....1..1..0..1..1....1..1..1..1..1
..1..1..1..0..0....1..1..1..0..0....1..0..1..1..1....1..1..1..1..1
CROSSREFS
Row 6 of A258554.
Sequence in context: A045733 A250490 A258552 * A235762 A235545 A232429
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 03 2015
STATUS
approved