

A257716


a(n) = smallest prime of even index not included earlier such that a(n) + a(n1) + a(n2) is a prime, beginning with a(1) = 3 and a(2) = 7.


3



3, 7, 13, 53, 37, 19, 71, 61, 79, 89, 29, 139, 43, 101, 107, 151, 131, 181, 229, 113, 199, 251, 163, 173, 263, 223, 271, 239, 311, 193, 293, 337, 281, 349, 317, 373, 359, 397, 457, 383, 409, 421, 491, 521, 541, 557, 433, 443, 577, 463, 503, 593, 601, 673, 479, 569, 619, 613
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The union of A257716 and A257717 is A065091 (conjecture).


LINKS

Table of n, a(n) for n=1..58.


EXAMPLE

a(4) = 53 since a(2)+a(3) is 20 and 53, whose index equals 16, is the first evenindexed prime which meets the criteria. 20 + 11 = 31, a prime, but 11 is the 5th prime and therefore cannot be used.


MATHEMATICA

f[s_List] := Block[{p = s[[2]] + s[[1]], q = 13}, While[ !PrimeQ[p + q]  MemberQ[s, q], q = NextPrime[q, 2]]; Append[s, q]]; Nest[f, {3, 7}, 56]


PROG

(PARI) v=[3, 7]; n=1; while(n<100, if(isprime(v[#v]+v[#v1]+prime(2*n))&&!vecsearch(vecsort(v), prime(2*n)), v=concat(v, prime(2*n)); n=0); n++); v \\ Derek Orr, May 13 2015


CROSSREFS

Cf. A073653, A257717, A257718.
Sequence in context: A090968 A020641 A062736 * A103564 A083201 A228209
Adjacent sequences: A257713 A257714 A257715 * A257717 A257718 A257719


KEYWORD

nonn


AUTHOR

Robert G. Wilson v, May 05 2015


STATUS

approved



