login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228209
x-values in the solutions to x^2 - 10*y^2 = 9.
3
3, 7, 13, 57, 253, 487, 2163, 9607, 18493, 82137, 364813, 702247, 3119043, 13853287, 26666893, 118441497, 526060093, 1012639687, 4497657843, 19976430247, 38453641213, 170792556537, 758578289293, 1460225726407, 6485619490563, 28805998562887, 55450123962253
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Pell Equation
FORMULA
G.f.: -x*(7*x^5+13*x^4+57*x^3-13*x^2-7*x-3) / (x^6-38*x^3+1).
a(n) = 38*a(n-3)-a(n-6).
MATHEMATICA
CoefficientList[Series[-(7 x^6 + 13 x^5 + 57 x^4 - 13 x^3 - 7 x^2 - 3 x) / (x^6 - 38 x^3 + 1), {x, 1, 40}], x] (* Vincenzo Librandi, Aug 17 2013 *)
LinearRecurrence[{0, 0, 38, 0, 0, -1}, {3, 7, 13, 57, 253, 487}, 30] (* Harvey P. Dale, Jan 06 2014 *)
PROG
(PARI) Vec(-x*(7*x^5+13*x^4+57*x^3-13*x^2-7*x-3)/(x^6-38*x^3+1) + O(x^100))
(Magma) I:=[3, 7, 13, 57, 253, 487]; [n le 6 select I[n] else 38*Self(n-3)-Self(n-6): n in [1..30]]; // Vincenzo Librandi, Aug 17 2013
CROSSREFS
Cf. A075836.
Sequence in context: A257716 A103564 A083201 * A176903 A004060 A028491
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Aug 16 2013
EXTENSIONS
a(1)=3 prepended by Max Alekseyev, Sep 04 2013
STATUS
approved