login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257715
Pentagonal numbers (A000326) that are the sum of six consecutive pentagonal numbers.
5
651, 354051, 196476315, 1833809355, 1017687528051, 564774036750651, 313425981747606051, 173938318056614696235, 1623451323680702588835, 900947621231988101541051, 499988268427580436128625651, 277472588498948806845840543051, 153985687725108202266731539138755
OFFSET
1,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,885289046402,-885289046402,0,0,0,-1,1).
FORMULA
G.f.: -3*x*(17*x^10 +6808*x^9 +56840*x^8 +35265352*x^7 +19570796200*x^6 -4188939995034*x^5 +338617906232*x^4 +545777680*x^3 +65374088*x^2 +117800*x +217) / ((x -1)*(x^10 -885289046402*x^5 +1)).
EXAMPLE
651 is in the sequence because P(21) = 651 = 51+70+92+117+145+176 = P(6)+ ... +P(11).
MATHEMATICA
CoefficientList[Series[3 (17 x^10 + 6808 x^9 + 56840 x^8 + 35265352 x^7 + 19570796200 x^6 - 4188939995034 x^5 + 338617906232 x^4 + 545777680 x^3 + 65374088 x^2 + 117800 x + 217)/((1 - x) (x^10 - 885289046402 x^5 + 1)), {x, 0, 33}], x] (* Vincenzo Librandi, May 06 2015 *)
LinearRecurrence[{1, 0, 0, 0, 885289046402, -885289046402, 0, 0, 0, -1, 1}, {651, 354051, 196476315, 1833809355, 1017687528051, 564774036750651, 313425981747606051, 173938318056614696235, 1623451323680702588835, 900947621231988101541051, 499988268427580436128625651}, 20] (* Harvey P. Dale, Dec 14 2015 *)
PROG
(PARI) Vec(-3*x*(17*x^10 +6808*x^9 +56840*x^8 +35265352*x^7 +19570796200*x^6 -4188939995034*x^5 +338617906232*x^4 +545777680*x^3 +65374088*x^2 +117800*x +217) / ((x -1)*(x^10 -885289046402*x^5 +1)) + O(x^100))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, May 05 2015
STATUS
approved