login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257309
Perfect hyper-4 powers: a^^b, where b <> 1.
5
0, 1, 4, 16, 27, 256, 3125, 46656, 65536, 823543, 16777216, 387420489, 10000000000, 285311670611, 7625597484987, 8916100448256, 302875106592253, 11112006825558016, 437893890380859375, 18446744073709551616, 827240261886336764177, 39346408075296537575424, 1978419655660313589123979, 104857600000000000000000000
OFFSET
1,3
COMMENTS
a^^b is the right associative power tower a^a^...^a^a of height b. a^^-1= 0 and a^^0 = 1. We exclude b=1 because otherwise all natural numbers would be in the sequence.
EXAMPLE
Numbers written as power towers include:
5^^2 = 5^5 = 3125;
3^^3 = 3^3^3 = 3^27 = 7625597484987;
2^^4 = 2^2^2^2 = 2^2^4 = 2^16 = 65536;
0^^5 = 0^0^0^0^0 = 0^0^0^1 = 0^0^0 = 0^1 = 0;
MAPLE
Digits := 200 ;
tpow := proc(a, b, logamax)
option remember;
if b = 0 then
1;
elif b = 1 then
a;
elif b = 2 then
a^a;
else
# log a^procname(a, b-1) = procnmae(a, b-1)*loga
if evalf(procname(a, b-1, logamax)*log(a)) > evalf(logamax) then
return -1 ;
elif procname(a, b-1, logamax) < 0 then
return -1 ;
else
a^procname(a, b-1, logamax) ;
end if;
end if;
end proc:
A257309 := proc(amax)
local a, n, m, t, logamax;
a := {0, 1} ;
logamax := evalf(log(amax)) ;
for n from 2 to amax do
if n^n > amax then
break;
end if;
for m from 2 do
t := tpow(n, m, logamax) ;
if t > amax or t < 0 then
break;
elif t <= amax and t > 0 then
a := a union {t} ;
end if;
end do:
end do:
sort(convert(a, list)) ;
end proc:
A257309(10^30) ; # R. J. Mathar, Jun 24 2024
CROSSREFS
Sequence in context: A111260 A067688 A097374 * A271936 A046358 A046366
KEYWORD
nonn
AUTHOR
Natan Arie Consigli, May 07 2015
STATUS
approved