login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A257057
Numbers k such that (# squares) = (# nonsquares) in the quarter-squares representation of k.
3
3, 7, 11, 13, 18, 21, 24, 27, 31, 34, 38, 43, 46, 51, 55, 57, 60, 66, 70, 73, 76, 83, 87, 91, 94, 99, 102, 106, 111, 114, 119, 123, 127, 133, 136, 141, 146, 150, 157, 160, 165, 171, 175, 181, 183, 186, 191, 198, 202, 208, 211, 214, 219, 227, 231, 237, 241
OFFSET
1,1
COMMENTS
Every positive integer is a sum of at most four distinct quarter squares; see A257019. The sequences A257056, A257057, A257058 partition the nonnegative integers.
LINKS
EXAMPLE
Quarter-square representations:
r(0) = 0
r(1) = 1
r(2) = 2
r(3) = 2 + 1, so that a(1) = 3
MATHEMATICA
z = 400; b[n_] := Floor[(n + 1)^2/4]; bb = Table[b[n], {n, 0, 100}];
s[n_] := Table[b[n], {k, b[n + 1] - b[n]}];
h[1] = {1}; h[n_] := Join[h[n - 1], s[n]];
g = h[100]; r[0] = {0};
r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, r[n - g[[n]]]]];
u = Table[Length[r[n]], {n, 0, z}] (* A257023 *)
v = Table[Length[Intersection[r[n], Table[n^2, {n, 0, 1000}]]], {n, 0, z}] (* A257024 *)
-1 + Select[Range[0, z], 2 v[[#]] < u[[#]] &] (* A257056 *)
-1 + Select[Range[0, z], 2 v[[#]] == u[[#]] &] (* A257057 *)
-1 + Select[Range[0, z], 2 v[[#]] > u[[#]] &] (* A257058 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 15 2015
STATUS
approved