login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257024
Number of squares in the quarter-sum representation of n.
5
1, 1, 0, 1, 1, 2, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 1, 2, 1, 2, 0, 1, 0, 1, 1, 1, 2, 1, 2, 2, 0, 1, 0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 0, 1, 0, 1, 1, 2, 0, 1, 2, 1, 2, 2, 3, 1, 0, 1, 0, 1, 1, 2, 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 2, 1, 2, 2
OFFSET
0,6
COMMENTS
Every positive integer is a sum of at most four distinct quarter squares; see A257019.
LINKS
EXAMPLE
Quarter-square representations:
r(5) = 4 + 1, so a(5) = 2;
r(11) = 9 + 2, so a(11) = 1;
r(35) = 30 + 4 + 1, so a(35) = 2.
MATHEMATICA
z = 100; b[n_] := Floor[(n + 1)^2/4]; bb = Table[b[n], {n, 0, 100}];
s[n_] := Table[b[n], {k, b[n + 1] - b[n]}];
h[1] = {1}; h[n_] := Join[h[n - 1], s[n]];
g = h[100]; Take[g, 100]; r[0] = {0};
r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, r[n - g[[n]]]]]
sq = Table[n^2, {n, 0, 1000}]; t = Table[r[n], {n, 0, z}]
u = Table[Length[Intersection[r[n], sq]], {n, 0, 250}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 15 2015
STATUS
approved