login
A256757
Number of iterations of A007733 required to reach 1.
5
0, 1, 2, 1, 2, 2, 3, 1, 3, 2, 3, 2, 3, 3, 2, 1, 2, 3, 4, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 1, 3, 2, 3, 3, 4, 4, 3, 2, 3, 3, 4, 3, 3, 4, 5, 2, 4, 3, 2, 3, 4, 4, 3, 3, 4, 4, 5, 2, 3, 3, 3, 1, 3, 3, 4, 2, 4, 3, 4, 3, 4, 4, 3, 4, 3, 3, 4, 2, 5, 3, 4, 3, 2, 4, 4, 3, 4, 3, 3, 4, 3, 5, 4, 2, 3, 4, 3, 3
OFFSET
1,3
COMMENTS
In other words, the minimal height (not counting k) of the power tower 2^(2^(...^(2^k)...)) required to make it eventually constant modulo n (=A245970(n)) for sufficiently large k.
a(n) <= A227944(n) + 1. - Max Alekseyev, Oct 11 2016
LINKS
FORMULA
For n>1, a(n) = a(A007733(n)) + 1.
MATHEMATICA
A007733 = Function[n, MultiplicativeOrder[2, n/(2^IntegerExponent[n, 2])]];
a = Function[n, k = 0; m = n; While[m > 1, m = A007733[m]; k++]; k];
Table[a[n], {n, 100}] (* Ivan Neretin, Apr 13 2015 *)
PROG
(PARI) a(n) = {if (n==1, return(0)); nb = 1; while((n = znorder(Mod(2, n/2^valuation(n, 2)))) != 1, nb++); nb; } \\ Michel Marcus, Apr 11 2015
(Haskell)
a256757 n = fst $ until ((== 1) . snd)
(\(i, x) -> (i + 1, fromIntegral $ a007733 x)) (0, n)
-- Reinhard Zumkeller, Apr 13 2015
CROSSREFS
Cf. A007733, A256607 (second iteration), A256758 (positions of records), A003434, A227944 (similarly built upon the totient function).
Sequence in context: A000374 A355735 A355733 * A333860 A277314 A120562
KEYWORD
nonn,easy
AUTHOR
Ivan Neretin, Apr 09 2015
STATUS
approved