OFFSET
0,2
COMMENTS
Smallest number m such that the trajectory of m under iteration of A007733 takes n steps to reach the fixed point.
The terms a(1)..a(9) are primes. The next eight terms are powers of 3, so that for n=10..17, a(n)=3^(n-1), but this apparently established pattern breaks at a(18), which is again a prime.
MATHEMATICA
A007733 = Function[n, MultiplicativeOrder[2, n/(2^IntegerExponent[n, 2])]];
a = Function[n, t = 1; While[A256757[t] < n , t++]; t]; Table[a[n], {n, 0, 9}] (* Ivan Neretin, Apr 13 2015 *)
PROG
(PARI) a007733(n) = znorder(Mod(2, n/2^valuation(n, 2)));
a256757(n) = {if (n==1, return(0)); nb = 1; while((n = a007733(n)) != 1, nb++); nb; }
a(n) = {k = 1; while(a256757(k) != n, k++); k; } \\ Michel Marcus, Apr 11 2015
(Haskell)
import Data.List (elemIndex); import Data.Maybe (fromJust)
a256758 = (+ 1) . fromJust . (`elemIndex` a256757_list)
-- Reinhard Zumkeller, Apr 13 2015
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Ivan Neretin, Apr 09 2015
EXTENSIONS
a(15)-a(18) from Michel Marcus, Apr 11 2015
a(19)-a(21) from Amiram Eldar, Mar 04 2023
STATUS
approved