OFFSET
0,2
COMMENTS
LINKS
FORMULA
a(0) = 1. For n >= 1; a(n) = 4*A006257(n).
For n>0, a(n) = 8*(n - 2^floor(log_2(n))) + 4 (by the formula of Gregory Pat Scandalis in A006257). - Danny Rorabaugh, Apr 20 2015
EXAMPLE
Written as an irregular triangle in which the row lengths are the terms of A011782, the sequence begins:
1;
4;
4,12;
4,12,20,28;
4,12,20,28,36,44,52,60;
4,12,20,28,36,44,52,60,68,76,84,92,100,108,116,124;
4,12,20,28,36,44,52,60,68,76,84,92,100,108,116,124,132,140,148,156,164,172,180,188,196,204,212,220,228,236,244,252;
...
Row sums give A000302.
Right border gives A173033.
PROG
(Sage) [1] + [8*(n - 2^floor(log(n, base=2))) + 4 for n in range(1, 77)] # Danny Rorabaugh, Apr 20 2015
(PARI) a(n) = if(n, 8*(n - 2^logint(n, 2)) + 4, 1)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Mar 20 2015
STATUS
approved