login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256253
Number of successive odd nonprimes A014076 and number of successive odd primes A065091, interleaved.
3
1, 3, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 3, 1, 1, 2, 1, 2, 1, 1, 6, 1, 1, 1, 2, 2, 4, 2, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 4, 2, 1, 2, 5, 1, 5, 1, 1, 2, 1, 1, 2, 2, 4, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 4, 1, 6, 1, 1, 2, 1, 1, 6, 1, 2, 1, 4, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2
OFFSET
1,2
COMMENTS
See also A256252 and A256262 which contain similar diagrams.
FORMULA
a(n) = A256252(n-1), n >= 3.
EXAMPLE
Consider an irregular array in which the odd-indexed rows list successive odd nonprimes (A014076) and the even-indexed rows list successive odd primes (A065091), in the sequence of odd numbers (A005408), as shown below:
1;
3, 5, 7;
9;
11, 13;
15;
17; 19;
21,
23;
25, 27;
39, 31;
...
a(n) is the length of the n-th row.
.
Illustration of the first 16 regions of the diagram of the symmetric representation of odd nonprimes (A014076) and of odd primes (A065091):
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
. |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | 31
. |_ _ _ _ _ _ _ _ _ _ _ _ _ _ | | 29
. | | |_ _ _ _ _ _ _ _ _ _ _ | | | 23
. | | | |_ _ _ _ _ _ _ _ _ | | | | 19
. | | | |_ _ _ _ _ _ _ _ | | | | | 17
. | | | | |_ _ _ _ _ _ | | | | | | 13
. | | | | |_ _ _ _ _ | | | | | | | 11
. | | | | | |_ _ _ | | | | | | | | 7
. | | | | | |_ _ | | | | | | | | | 5
. A014076 | | | | | |_ | | | | | | | | | | 3
. 1 | | | | | |_|_|_|_| | | | | | | | A065091
. 9 | | | | |_ _ _ _ _|_|_| | | | | |
. 15 | | | |_ _ _ _ _ _ _ _|_|_| | | |
. 21 | | |_ _ _ _ _ _ _ _ _ _ _|_| | |
. 25 | |_ _ _ _ _ _ _ _ _ _ _ _ _| | |
. 27 |_ _ _ _ _ _ _ _ _ _ _ _ _ _|_|_|
.
a(n) is also the length of the n-th boundary segment in the zig-zag path of the above diagram, between the two types of numbers, as shown below for n = 1..10:
.
. |_ _ _
. |_ _
. |_ _
. |_
. |
. |_ _
.
The sequence begins: 1,3,1,2,1,2,1,1,2,2,...
.
PROG
(PARI) lista(nn) = {my(nb = 1, isp = 0); forstep (n=3, nn, 2, if (bitxor(isp, ! isprime(n)), nb++, print1(nb, ", "); nb = 1; isp = ! isp); ); } \\ Michel Marcus, May 25 2015
KEYWORD
nonn
AUTHOR
Omar E. Pol, Mar 30 2015
STATUS
approved