OFFSET
1,2
COMMENTS
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..16384
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 37.
N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
FORMULA
a(n) = 1 + 4*A256249(n-1), n >= 1.
EXAMPLE
Also, written as an irregular triangle T(n,k), k >= 1, in which the row lengths are the terms of A011782 the sequence begins:
1;
5;
9, 21;
25, 37, 57, 85;
89, 101,121,149,185,229,281,341;
345,357,377,405,441,485,537,597,665,741,825,917,1017,1125,1241,1365;
...
Right border gives the positive terms of A002450.
MATHEMATICA
1 + 4*Accumulate@ Prepend[Flatten@ Table[Range[1, 2^n - 1, 2], {n, 0, 7}], 0] (* Michael De Vlieger, Nov 03 2022, after Ivan N. Ianakiev at A256249 *)
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Omar E. Pol, Mar 20 2015
STATUS
approved