login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A328854 Dirichlet g.f.: Product_{p prime} 1 / (1 - 2 * p^(-s))^2. 1
1, 4, 4, 12, 4, 16, 4, 32, 12, 16, 4, 48, 4, 16, 16, 80, 4, 48, 4, 48, 16, 16, 4, 128, 12, 16, 32, 48, 4, 64, 4, 192, 16, 16, 16, 144, 4, 16, 16, 128, 4, 64, 4, 48, 48, 16, 4, 320, 12, 48, 16, 48, 4, 128, 16, 128, 16, 16, 4, 192, 4, 16, 48, 448, 16, 64, 4, 48, 16, 64, 4, 384, 4, 16, 48 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Dirichlet convolution of A061142 with itself.

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000

FORMULA

If n = Product (p_j^k_j) then a(n) = Product (2^k_j * (k_j + 1)).

a(n) = 2^bigomega(n) * tau(n), where bigomega = A001222 and tau = A000005.

MATHEMATICA

Table[2^PrimeOmega[n] DivisorSigma[0, n], {n, 1, 75}]

f[p_, e_] := (e + 1)*2^e; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 02 2020 *)

PROG

(PARI) a(n) = numdiv(n)*2^bigomega(n); \\ Michel Marcus, Dec 02 2020

(PARI) for(n=1, 100, print1(direuler(p=2, n, 1/(1 - 2*X)^2)[n], ", ")) \\ Vaclav Kotesovec, Aug 22 2021

CROSSREFS

Cf. A000005, A001222, A061142, A123667, A322328.

Sequence in context: A256261 A256251 A256139 * A253064 A109045 A079315

Adjacent sequences:  A328851 A328852 A328853 * A328855 A328856 A328857

KEYWORD

nonn,mult

AUTHOR

Ilya Gutkovskiy, Oct 28 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 25 17:13 EDT 2021. Contains 348255 sequences. (Running on oeis4.)