The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A328854 Dirichlet g.f.: Product_{p prime} 1 / (1 - 2 * p^(-s))^2. 1
1, 4, 4, 12, 4, 16, 4, 32, 12, 16, 4, 48, 4, 16, 16, 80, 4, 48, 4, 48, 16, 16, 4, 128, 12, 16, 32, 48, 4, 64, 4, 192, 16, 16, 16, 144, 4, 16, 16, 128, 4, 64, 4, 48, 48, 16, 4, 320, 12, 48, 16, 48, 4, 128, 16, 128, 16, 16, 4, 192, 4, 16, 48, 448, 16, 64, 4, 48, 16, 64, 4, 384, 4, 16, 48 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Dirichlet convolution of A061142 with itself.
LINKS
FORMULA
If n = Product (p_j^k_j) then a(n) = Product (2^k_j * (k_j + 1)).
a(n) = 2^bigomega(n) * tau(n), where bigomega = A001222 and tau = A000005.
MATHEMATICA
Table[2^PrimeOmega[n] DivisorSigma[0, n], {n, 1, 75}]
f[p_, e_] := (e + 1)*2^e; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 02 2020 *)
PROG
(PARI) a(n) = numdiv(n)*2^bigomega(n); \\ Michel Marcus, Dec 02 2020
(PARI) for(n=1, 100, print1(direuler(p=2, n, 1/(1 - 2*X)^2)[n], ", ")) \\ Vaclav Kotesovec, Aug 22 2021
CROSSREFS
Sequence in context: A256261 A256251 A256139 * A253064 A109045 A079315
KEYWORD
nonn,mult
AUTHOR
Ilya Gutkovskiy, Oct 28 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 07:02 EDT 2024. Contains 373433 sequences. (Running on oeis4.)