login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256031
Number of irreducible idempotents in partial Brauer monoid PB_n.
3
2, 3, 12, 30, 240, 840, 10080, 45360, 725760, 3991680, 79833600, 518918400, 12454041600, 93405312000, 2615348736000, 22230464256000, 711374856192000, 6758061133824000, 243290200817664000, 2554547108585472000, 102181884343418880000, 1175091669949317120000
OFFSET
1,1
COMMENTS
Table 2 in chapter 7 of the preprint contains a typo: a(9) is not 725860. - R. J. Mathar, Mar 14 2015
LINKS
I. Dolinka, J. East, A. Evangelou, D. FitzGerald, N. Ham, J. Hyde and N. Loughlin, Enumeration of idempotents in diagram semigroups and algebras, arXiv preprint arXiv:1408.2021 [math.GR], 2014. See Prop. 22.
FORMULA
There are simple formulas for the two bisections - see Dolinka et al.
a(2n-1) = A052612(2n-1) = A052616(2n-1) = A052849(2n-1) = A098558(2n-1) = A208529(2n+1). - Omar E. Pol, Mar 14 2015
Sum_{n>=1} 1/a(n) = (e^2+3)/(4*e) = 1/e + sinh(1)/2. - Amiram Eldar, Feb 02 2023
MAPLE
A256031 := proc(n)
if type(n, 'odd') then
2*n! ;
else
(n+1)*(n-1)! ;
end if;
end proc:
seq(A256031(n), n=1..20) ; # R. J. Mathar, Mar 14 2015
MATHEMATICA
a[n_] := If[OddQ[n], 2*n!, (n + 1)*(n - 1)!];
Array[a, 20] (* Jean-François Alcover, Nov 24 2017, from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 14 2015
STATUS
approved