login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256034
Number of irreducible idempotents in partition monoid P_n.
2
2, 8, 58, 648, 9794, 187302, 4353920, 119604518, 3803405406, 137828444548, 5621826966870, 255529007818470, 12836027705244956, 707657189518002658, 42563168959162893550, 2778631761757307345760, 196003207603955109742122
OFFSET
1,1
LINKS
I. Dolinka, J. East, A. Evangelou, D. FitzGerald, N. Ham, et al., Enumeration of idempotents in diagram semigroups and algebras, arXiv preprint arXiv:1408.2021 [math.GR], 2014. See Table 3.
FORMULA
a(n) = A060639(n) + A256033(n).
MATHEMATICA
f[n_, r_, s_] := f[n, r, s] = Module[{resu, m, a, b}, Which[n <= 0, 0, s == 1, StirlingS2[n, r], r == 1, StirlingS2[n, s], True, resu = s f[n-1, r-1, s] + r f[n-1, r, s-1] + r s f[n-1, r, s]; Do[resu += Binomial[n-2, m] (b (r-a) + a (s-b)) f[m, a, b] f[-m+n-1, r-a, s-b], {m, n}, {a, r-1}, {b, s-1}]; resu]];
a33[n_] := Module[{b = 0}, Do[b += r s f[n, r, s], {r, n}, {s, n}]; b];
a39[n_] := Module[{t}, t = Table[BellB[k-1]^2/(k-1)!, {k, 1, n+1}]; n! SeriesCoefficient[1 + Log[O[x]^(n+1) + Sum[t[[i]] x^(i-1), {i, 1, Length[t]}]], n]];
a[n_] := a33[n] + a39[n];
Table[a[n], {n, 1, 17}] (* Jean-François Alcover, Dec 15 2018 *)
CROSSREFS
Sequence in context: A005804 A162067 A179534 * A086907 A132186 A191603
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 14 2015
STATUS
approved