The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A255767 Triangle read by rows: T(n,k) = sum of all parts of all partitions of n into k distinct parts. 2
 1, 4, 6, 3, 12, 8, 10, 25, 24, 36, 6, 14, 77, 14, 32, 104, 40, 27, 153, 90, 40, 220, 150, 10, 22, 297, 275, 22, 72, 348, 444, 60, 26, 481, 676, 130, 56, 616, 938, 280, 60, 660, 1455, 450, 15, 80, 880, 1872, 832, 32, 34, 1003, 2618, 1309, 85, 108, 1224, 3312, 2106, 180, 38, 1349, 4465, 3078, 380, 120, 1620, 5540, 4540, 720 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Row n has length A003056(n) hence the first element of column k is in row A000217(n). The first element of column k is A000217(k). Column 1 is A038040. LINKS Alois P. Heinz, Rows n = 1..500, flattened FORMULA T(n,k) = n * A116608(n,k). EXAMPLE Triangle begins:     1;     4;     6,    3;    12,    8;    10,   25;    24,   36,    6;    14,   77,   14;    32,  104,   40;    27,  153,   90;    40,  220,  150,   10;    22,  297,  275,   22;    72,  348,  444,   60;    26,  481,  676,  130;    56,  616,  938,  280;    60,  660, 1455,  450,  15;    80,  880, 1872,  832,  32;    34, 1003, 2618, 1309,  85;   108, 1224, 3312, 2106, 180;    38, 1349, 4465, 3078, 380;   ... MAPLE A003056 := proc(n)     floor((sqrt(1+8*n)-1)/2) ; end proc: nDiffParts := proc(L)     nops(convert(L, set)) ; end proc: A116608 := proc(n, k)     local a, L;     a :=0 ;     for L in combinat[partition](n) do         if nDiffParts(L) = k then             a := a+1 ;         end  if;     end do:     a ; end proc: A255767 := proc(n, k)     n*A116608(n, k) ; end proc: for n from 1 to 20 do     for k from 1 to A003056(n) do         printf("%d, ", A255767(n, k)) ;     end do:     printf("\n") ; end do: # R. J. Mathar, Jul 10 2015 # second Maple program: b:= proc(n, i) option remember; local j; if n=0 then 1       elif i<1 then 0 else []; for j from 0 to n/i do zip((x, y)       ->x+y, %, [`if`(j>0, 0, [][]), b(n-i*j, i-1)], 0) od; %[] fi     end: T:= n-> subsop(1=NULL, n*[b(n, n)])[]: seq(T(n), n=1..30);  # Alois P. Heinz, Jul 26 2015 MATHEMATICA nmax = 30; T = Rest[CoefficientList[#, t]]& /@ Rest[CoefficientList[-1 + Product[1 + t x^j/(1 - x^j), {j, 1, nmax}] + O[x]^(nmax+1), x]]; Table[n*T[[n]], {n, 1, nmax}] // Flatten (* Jean-François Alcover, May 19 2018 *) CROSSREFS Cf. A000217, A003056, A038040, A066186 (row sums), A116608, A255768. Sequence in context: A198113 A264962 A082193 * A274926 A079171 A029678 Adjacent sequences:  A255764 A255765 A255766 * A255768 A255769 A255770 KEYWORD nonn,tabf,look AUTHOR Omar E. Pol, May 21 2015 EXTENSIONS a(7) and beyond from R. J. Mathar, Jul 10 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 19 00:35 EST 2020. Contains 332028 sequences. (Running on oeis4.)