The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A255675 Least integer k such that the n-th prime of form m^2+1 divides the composite number k^2+1. 0
 3, 3, 13, 31, 91, 183, 241, 381, 553, 651, 1261, 1561, 2863, 3081, 4291, 5403, 6973, 8011, 8743, 11991, 13341, 14281, 15253, 15751, 16771, 17823, 21171, 22351, 24181, 25441, 28731, 30801, 32221, 33673, 41413, 42231, 43891, 49953, 52671, 55461, 57361, 62251, 65281 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n)= A002496(n)- A005574(n) for n>1 where A002496 are the primes of form m^2 + 1 and A005574 are the numbers m such that m^2 + 1 is prime. Consequence: this is a subsequence of A002061 (central polygonal numbers of the form m^2 - m + 1). LINKS Table of n, a(n) for n=1..43. FORMULA a(n) = A002496(n)- A005574(n) for n>1. EXAMPLE a(3)=13 because A002496(3)=17, and 17 divides 13^2+1= 2*5*17. MAPLE with(numtheory): nn:=1000: for i from 1 to nn do: p:=i^2+1: if type(p, prime)=true then ii:=0: for k from i+1 to 10^6 while(ii=0) do: if irem(k^2+1, p)=0 then ii:=1:printf(`%d, `, k): else fi: od: fi: od: MATHEMATICA Clear[m]; m[1]=1; m[2]=2; m[n_] := m[n] = For[j = m[n-1]+2, True, j = j+2, If[PrimeQ[j^2+1], Return[j]]]; a[n_] := For[k = m[n]+1, True, k++, If[ Divisible[k^2+1, m[n]^2+1], Return[k]]]; Array[a, 50] (* Jean-François Alcover, Jul 21 2015 *) CROSSREFS Cf. A002061, A002496, A005574. Sequence in context: A219314 A288146 A019154 * A272857 A092103 A233697 Adjacent sequences: A255672 A255673 A255674 * A255676 A255677 A255678 KEYWORD nonn AUTHOR Michel Lagneau, Jul 10 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 19:32 EDT 2023. Contains 365503 sequences. (Running on oeis4.)