login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255677
Least integer k > 1 such that pi(k)^2 + pi(k*n)^2 is a square, where pi(.) is the prime-counting function given by A000720.
2
5, 30, 8458, 18, 252, 25, 1407, 476, 9098, 108, 1814, 1868, 153, 1005, 67, 26532, 1592, 200, 963, 99, 833, 1356, 3869, 981, 531, 127, 4961, 366, 1192, 1873, 41308, 409, 21756, 194664, 180, 27071, 7433, 160179, 2076, 544, 211, 10639, 19571, 33483, 603, 68380, 1517, 47529, 35923
OFFSET
2,1
COMMENTS
Conjecture: Each positive rational number r < 1 can be written as m/n with 1 < m < n such that pi(m)^2 + pi(n)^2 is a square. Also, any rational number r > 1 can be written as m/n with m > n > 1 such that pi(m)^2 - pi(n)^2 is a square.
For example, 23/24 = 19947716/20815008 with pi(19947716)^2 + pi(20815008)^2 = 1267497^2 + 1319004^2 = 1829295^2, and 7/3 = 26964/11556 with pi(26964)^2 - pi(11556)^2 = 2958^2 - 1392^2 = 2610^2.
REFERENCES
Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
EXAMPLE
a(2) = 5 since pi(5)^2 + pi(5*2)^2 = 3^2 + 4^2 = 5^2.
a(3) = 30 since pi(30)^2 + pi(30*3)^2 = 10^2 + 24^2 = 26^2.
a(68) = 6260592 since pi(6260592)^2 + pi(6260592*68)^2 = 429505^2 + 22632876^2 = 22636951^2.
a(95) = 7955506 since pi(7955506)^2 + pi(7955506*95)^2 = 536984^2 + 38985687^2 = 38989385^2.
MATHEMATICA
SQ[n_]:=IntegerQ[Sqrt[n]]
Do[k=1; Label[aa]; k=k+1; If[SQ[PrimePi[k]^2+PrimePi[k*n]^2], Goto[bb], Goto[aa]]; Label[bb]; Print[n, " ", k]; Continue, {n, 2, 50}]
PROG
(PARI) a(n)={ k=2; while(!issquare(primepi(k)^2 + primepi(k*n)^2), k++); return(k); }
main(size)={ v=vector(size); for(i=2, size+1, v[i-1]=a(i)); return(v); } /* Anders Hellström, Jul 11 2015 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jul 10 2015
STATUS
approved