login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least integer k > 1 such that pi(k)^2 + pi(k*n)^2 is a square, where pi(.) is the prime-counting function given by A000720.
2

%I #33 Jul 16 2015 08:37:20

%S 5,30,8458,18,252,25,1407,476,9098,108,1814,1868,153,1005,67,26532,

%T 1592,200,963,99,833,1356,3869,981,531,127,4961,366,1192,1873,41308,

%U 409,21756,194664,180,27071,7433,160179,2076,544,211,10639,19571,33483,603,68380,1517,47529,35923

%N Least integer k > 1 such that pi(k)^2 + pi(k*n)^2 is a square, where pi(.) is the prime-counting function given by A000720.

%C Conjecture: Each positive rational number r < 1 can be written as m/n with 1 < m < n such that pi(m)^2 + pi(n)^2 is a square. Also, any rational number r > 1 can be written as m/n with m > n > 1 such that pi(m)^2 - pi(n)^2 is a square.

%C For example, 23/24 = 19947716/20815008 with pi(19947716)^2 + pi(20815008)^2 = 1267497^2 + 1319004^2 = 1829295^2, and 7/3 = 26964/11556 with pi(26964)^2 - pi(11556)^2 = 2958^2 - 1392^2 = 2610^2.

%D Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

%H Zhi-Wei Sun, <a href="/A255677/b255677.txt">Table of n, a(n) for n = 2..100</a>

%H Zhi-Wei Sun, <a href="/A255677/a255677_1.txt">Checking the conjecture for r = a/b, b/a with 1 <= a < b <= 50</a>

%H Zhi-Wei Sun, <a href="http://arxiv.org/abs/1402.6641">Problems on combinatorial properties of primes</a>, arXiv:1402.6641 [math.NT], 2014.

%e a(2) = 5 since pi(5)^2 + pi(5*2)^2 = 3^2 + 4^2 = 5^2.

%e a(3) = 30 since pi(30)^2 + pi(30*3)^2 = 10^2 + 24^2 = 26^2.

%e a(68) = 6260592 since pi(6260592)^2 + pi(6260592*68)^2 = 429505^2 + 22632876^2 = 22636951^2.

%e a(95) = 7955506 since pi(7955506)^2 + pi(7955506*95)^2 = 536984^2 + 38985687^2 = 38989385^2.

%t SQ[n_]:=IntegerQ[Sqrt[n]]

%t Do[k=1;Label[aa];k=k+1;If[SQ[PrimePi[k]^2+PrimePi[k*n]^2],Goto[bb],Goto[aa]];Label[bb];Print[n," ",k];Continue,{n,2,50}]

%o (PARI) a(n)={ k=2; while(!issquare(primepi(k)^2 + primepi(k*n)^2),k++); return(k);}

%o main(size)={ v=vector(size); for(i=2, size+1, v[i-1]=a(i)); return(v);} /* _Anders Hellström_, Jul 11 2015 */

%Y Cf. A000720, A000290, A255679, A259531, A259789.

%K nonn

%O 2,1

%A _Zhi-Wei Sun_, Jul 10 2015