login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255335
Numbers n for which there exists k < n such that A000203(k) = A000203(n) and A007947(k) = A007947(n), where A000203 gives the sum of divisors, and A007947 gives the squarefree kernel of n.
4
2058, 10290, 22638, 26754, 34986, 39102, 47334, 51450, 52728, 59682, 63798, 76146, 84378, 88494, 96726, 109074, 113190, 121422, 125538, 133770, 137886, 146118, 150234, 162582, 170814, 174930, 183162, 195510, 199626, 207858, 211974, 220206, 224322, 232554, 236670, 249018, 257250, 261366, 263640, 269598, 281946, 286062, 294294
OFFSET
1,1
COMMENTS
Sequence A255423 sorted into ascending order.
Note that both for u = a(17) = 113190 and v = a(22) = 146118, A000203(u) = A000203(v) = 345600.
Also, both for w = a(20) = 133770 and x = a(25) = 170814, A000203(w) = A000203(x) = 403200.
Question: Does this have any common terms with A255334 ?
LINKS
PROG
(PARI)
allocatemem(234567890);
A007947(n) = factorback(factorint(n)[, 1]); \\ Andrew Lelechenko, May 09 2014
upto = (2^24)-4;
bigvec = vector(upto);
i=0; for(n=1, upto, bigvec[n] = Set([]); my(r=A007947(n), s=sigma(n)); if(setsearch(bigvec[r], s), i++; write("b255335.txt", i, " ", n), bigvec[r] = setunion(Set([s]), bigvec[r])));
(Scheme)
;; With Antti Karttunen's IntSeq-library. Quite naive implementation.
(define A255335 (MATCHING-POS 1 1 isA255335?))
(define (isA255335? n) (let ((sig_n (A000203 n)) (rad_n (A007947 n))) (let loop ((try (- n rad_n))) (cond ((< try rad_n) #f) ((and (= sig_n (A000203 try)) (= rad_n (A007947 try))) #t) (else (loop (- try rad_n)))))))
CROSSREFS
Subsequence of A013929.
Cf. also A255334, A255423, A254035.
Sequence in context: A074996 A252112 A045055 * A255423 A202418 A069427
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 23 2015, suggested by Michel Marcus, Feb 23 2015
STATUS
approved